

Collis, Inc. – Semi-Annual Long Term Monitoring (LTM) 2019 Second-Half Semi-Annual LTM Summary Report- DRAFT

Report Date:

October 17, 2019

D. Mark Doolan U.S. Environmental Protection Agency Air and Waste Management Division, WRAP Branch 11201 Renner Blvd. Lenexa, KS 66219 913-551-7169

Site Name:

Collis, Inc.

Clinton, Iowa

Corrective Measures Implementation - Long Term Monitoring

U.S. EPA ID #IAD047303771

Prepared by: Cindy Lang, BB&E, Inc.

BB&E, Inc. (BB&E) is pleased to provide this 2019 Second-Half Semi-Annual Long-Term Monitoring (LTM) Summary Report. This report documents the second semi-annual LTM sampling event of 2019 conducted September 9, 2019 through September 10, 2019 at the Collis Facility (Site) located at 2005 South 19th Street in Clinton, Clinton County, Iowa (Figure 1 and Figure 2). The Site includes an industrial manufacturing plant and covers an area of approximately 12.5 acres. A detailed summary of the operational history of the site, environmental setting (e.g., land use, topography, site geology and hydrogeology), historic environmental investigations completed, and the sources and extents of known contamination can be found in the USEPA approved Final Corrective Measures Study Report (CMS), dated April 24, 2018 (BB&E, 2018).

The CMS includes recommendations for soil land use controls (LUCs)/institutional controls (ICs). Because contamination remains in groundwater on-site and off-site at concentrations exceeding United States Environmental Protection Agency Maximum Contaminant Level (U.S. EPA MCL) criteria, resource-use restrictions via on-site and off-site Environmental Restrictive Covenants (ERC's) was developed. The ERCs restrict impacted properties from residential use and prohibit groundwater access and consumption. As noted in the Revised Final Corrective Measures Implementation - Long Term Monitoring Work Plan (CMI-LTM WP; BB&E, 2019a), which was

submitted to, and approved by the U.S. EPA, the CMS included recommendations for LTM of groundwater, in addition to the ERC's, including semi-annual groundwater monitoring for five years. Following the five years of semi-annual LTM, an evaluation will be conducted to determine the effectiveness of the monitored natural attenuation (MNA) groundwater remedy. Additionally, due to residual contamination in subsurface soils (2-10 feet below ground surface [bgs]) above U.S. EPA screening levels, a Media Management Plan (MMP) was developed to protect construction workers from exposure to subsurface contamination (BB&E, 2017). The MMP includes inspection and maintenance requirements for the gravel lot located north and northeast of the main facility building; specifically, the gravel lot will be maintained as an effective barrier to protect against direct contact with impacted subsurface soils as a result of erosion and normal use of the gravel surface cover. The gravel lot is to be inspected semi-annually to determine if it is functioning as intended and if maintenance is required. The MMP was submitted to, and approved by the US EPA, and included inspection and maintenance requirements for the gravel lot located north and northeast of the main facility building.

On February 25-27, 2019, thirty-one monitoring wells and piezometers were abandoned at and in the vicinity of the Collis facility. The monitoring wells and piezometers that were abandoned were no longer utilized, and, as agreed upon during the October 24, 2018 meeting at Region 7 between the USEPA and Collis, were to be properly abandoned to minimize long-term environmental liabilities. Abandonment activities are documented in the *Final Summary Report for 2019 Monitoring Well Abandonment Activities* (BB&E, 2019b).

Following the February 2019 monitoring well abandonment activities, the CMI-LTM WP was revised, and approved by the USEPA on 8 May 2019, to the Revised Final CMI-LTM WP in order to reflect the changes in monitoring wells present at and in the vicinity of the Collis site.

This report has been prepared in accordance with the Revised Final CMI-LTM WP (BB&E, 2019a) and the *Quality Assurance Project Plan* (QAPP; BB&E, 2014).

The objectives for field activities completed during execution of the 2019 second-half semi-annual LTM event consisted of the following:

- Groundwater elevations were taken from relevant monitoring wells and piezometers, as
 defined in the Revised Final CMI-LTM WP, in order to develop potentiometric surface
 maps to continue to monitor and evaluate the extent of the groundwater interface with
 Manufacturer's Ditch and groundwater flow direction.
- Groundwater samples were collected for analysis to monitor concentrations of contaminants of concern over time.
- Groundwater monitoring was conducted to observe natural attenuation parameters and concentrations of chlorinated volatile organic compounds (CVOCs). MNA parameters included methane/ethane/ethene, iron, manganese, chloride, sulfate, nitrate and nitrite; these MNA parameters were selected in order to demonstrate the status of the MNA remedy at the Site.
- A gravel lot inspection was conducted in accordance with the 2017 MMP (BB&E, 2017) to identify areas where the gravel was worn down, erosion was occurring (e.g., deep potholes), animals were burrowing, and/or ponding was occurring, and determine if any maintenance of the lot was required.

2019 SECOND-HALF SEMI-ANNUAL LTM MONITORING SUMMARY

This 2019 second-half semi-annual LTM summary report contains a summary of groundwater analytical results (**Table 1**), a summary of groundwater elevation results (**Table 2**), groundwater field parameter readings (**Table 3**), Vapor Intrusion Screening Level (VISL) comparisons (**Table 4**), MNA results (**Table 5**), detections summary figures (**Figures 3**, **4**, **5**, and **6**), potentiometric surface maps (**Figures 7** and **8**), groundwater concentration trend graphs for key monitoring wells (**Graphs 1**, **2**, and **3**), laboratory analytical data (**Attachment A**), field notes/forms (**Attachment B**), and the gravel lot inspection (**Attachment C**).

The 2019 second-half semi-annual LTM activities are summarized below:

 Groundwater samples were collected from specific site monitoring wells, as described in the Revised Final CMI-LTM WP. Groundwater analytical results are summarized in Table 1, and sample locations are shown on Figure 2.

- Groundwater samples from the first saturated unit (a shallow unconfined aquifer) were collected from MW-38, MW-39, MW-50S, PZ-47 and PZ-48 and analyzed for volatile organic compounds (VOCs; U.S. EPA Method 8260).
- o Groundwater samples from the second saturated unit (upper unconsolidated sediments and weathered bedrock) were collected from MW-34, MW-45, MW-47S, MW-50, and MW-56 and analyzed for VOCs (U.S. EPA Method 8260). Additionally, MW-34 was sampled and analyzed for MNA parameters (chloride, nitrate/nitrite, sulfate/sulfide, dissolved iron, dissolved manganese, methane, ethane, and ethene). Monitoring wells MW-34 and MW-45 were also sampled and analyzed for 1,4-dioxane (U.S. EPA Method 8260SIM).
- o Groundwater samples from the third saturated unit (lower unconsolidated sediments and upper bedrock) were collected from MW-42 and MW-53 and analyzed for VOCs (U.S. EPA Method 8260), 1,4-dioxane (U.S. EPA Method 8260SIM), and MNA parameters (chloride, nitrate/nitrite, sulfate/sulfide, dissolved iron, dissolved manganese, methane, ethane, and ethene).
- A groundwater sample from the fourth saturated unit (bedrock) was collected from MW-43 and analyzed for VOCs (U.S. EPA Method 8260).
- Groundwater field parameters, including oxidation-reduction potential (ORP), dissolved oxygen (DO), specific conductivity, turbidity, and pH, were collected from monitoring wells during purging, and prior to sample collection, at approximately 5-minute intervals. Groundwater field parameters were collected to determine when stabilization had been achieved and a groundwater sample could be collected. A groundwater sample was collected when field parameters had stabilized for three successive readings or when 45 minutes of purging had been completed. Prior to sample collection, a final reading of the field parameters was recorded. The following stabilization criteria were used:
 - $_{\circ}$ ± 0.1 Standard Unit (S.U.) for pH
 - ±3 percent (%) for specific conductance (millisiemens/centimeter [mS/cm])
 - $_{\circ}$ ±10 millivolts (mV) for ORP
 - $_{\circ}$ ± 0.3 milligrams per liter (mg/L) for DO

 - $\pm 10\%$ for turbidity values or less than (<) 50 Nephelometric Turbidity Units (NTUs)

Groundwater field parameters were used to enhance the dataset for evaluating the effectiveness of the MNA groundwater remedy in accordance with the *Natural Attenuation* of *Chlorinated Solvents in Groundwater: Principles and Practices* (Interstate Technology and Regulatory Council, 1999) guidance document.

In accordance with the Revised Final CMI-LTM WP all purge water generated was disposed
of directly at the waste water treatment plant inside the Collis Facility. All sampling gloves
and other personal protective equipment was double-bagged and placed in an on-site
municipal waste container for disposal.

DEVIATIONS FROM THE REVISED FINAL CMI-LTM WP

Deviations from the Revised Final CMI-LTM WP experienced during the 2019 second half semiannual LTM event included the following:

All samples were collected with a peristaltic pump due to multiple equipment malfunctions
with the bladder pump compressor and controller. The peristaltic pump still utilizes the
low-flow sampling methodology, as required in the QAPP (BB&E, 2014).

GROUNDWATER ELEVATION SUMMARY

Monitoring wells/piezometers that are screened in four different saturated units, as described in the Revised Final CMI-LTM WP, were gauged during the 2019 second-half semi-annual LTM event. Potentiometric surface maps for the first and second saturated units are included in this report as **Figures 7** and **8**. Potentiometric surface maps were not prepared for the third or fourth saturated units as only two and one data points, respectively, are available for these saturated units. A summary of groundwater elevation and flow information is summarized below:

- Historically, groundwater in the first saturated unit, a shallow unconfined aquifer, flows
 northwest to north-northwest. Groundwater in the first saturated unit appears to vent to
 Manufacturer's Ditch. As shown on Figure 7, the groundwater flow direction in the first
 saturated unit, was consistent with historic observations.
- Historically, groundwater in the second saturated unit, the upper unconsolidated sediments
 and weathered bedrock, flows northwest. As shown on Figure 8, the groundwater flow
 direction in the second saturated unit was consistent with historic observations.

- Historically, based on previous potentiometric surface maps, groundwater in the third saturated unit, the lower unconsolidated sediments and weathered bedrock, flows northwest.
- Upon removal of expansion plugs, various monitoring wells were noted to have water slowly flowing to the top and/or over the top of casing indicating artesian conditions consistent with historic observations. Wells exhibiting artesian conditions during the 2019 second-half semi-annual LTM event are identified on **Table 2**.

A summary of groundwater elevations is included as **Table 2** and field notes and forms are provided for reference in **Attachment B**.

GROUNDWATER ANALYTICAL RESULTS

As specified in the Revised Final CMI-LTM WP, groundwater analytical results were compared to U.S. EPA MCLs or the most recent Regional Screening Level (RSLs), if no MCL exists, for the purposes of evaluating the effectiveness of the MNA groundwater remedy. In addition to the MCL or RSL comparison, per the Revised Final CMI-LTM WP, shallow groundwater analytical results for VOCs were also compared to target groundwater concentrations for VISLs. VOC results from the first and second saturated units have been compared to VISL target groundwater concentrations for commercial exposure, calculated using the U.S. EPA VISL Calculator last updated May 2018 (U.S. EPA, 2018). A summary of groundwater analytical results is provided in **Table 1**. Groundwater analytical results compared to VISL target groundwater concentrations for the first and second saturated units are shown on **Table 4**.

All samples were analyzed by ALS Laboratory Group located in Holland, Michigan (a National Environmental Laboratory Accreditation Program [NELAP] approved lab). A complete set of laboratory results is provided in **Attachment A**. Field notes and sample log forms are provided for reference in **Attachment B**.

Laboratory analytical results are summarized below.

VOCs

First Saturated Unit: Monitoring wells MW-38, MW-39, MW-50S, PZ-47, and PZ-48 were sampled and analyzed for VOCs. VOCs detected above screening criteria included cis-1,2-Dichloroethene (DCE), trichloroethylene (TCE) and vinyl chloride (VC).

Cis-1,2-DCE was detected above the MCL in MW-38 and MW-39. TCE was detected above the VISL in the duplicate sample of MW-39. It should be noted that it was not detected in the parent sample at MW-39. VC was detected above the MCL and VISL target groundwater concentration in MW-38, MW-39, and MW-50S.

Additional detections of VOCs in the first saturated unit include low level detections of acetone (MW-38, MW-39, MW-50S, PZ-47, and PZ-48), 2-butanone (PZ-47, and PZ-48), tert-butyl alcohol (MW-50S, PZ-47, and PZ-48), chloromethane (PZ-47), and carbon disulfide (PZ-48); all detections are below applicable USEPA MCLs or USEPA Tapwater RSLs. These VOCs have not historically been present at the site and are not considered site contaminants of concern, and due to their low concentrations in numerous wells, are not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not included on the results tables or figures, but are indicated in the laboratory analytical reports in **Attachment 1**.

Analytical results for the first saturated unit are included on Table 1, Table 4, and Figure 3.

Second Saturated Unit: Monitoring wells MW-34, MW-45, MW-47S, MW-50, and MW-56 were sampled and analyzed for VOCs. VOCs detected above screening criteria included cis-1,2-DCE, TCE, and VC.

Cis-1,2-DCE was detected above the MCL in MW-34 and MW-45. VC was detected above both the MCL and VISL target groundwater concentration in MW-34, MW-45 and MW-50. TCE was detected above both the MCL and VISL target groundwater concentration in MW-34, and above just the VISL target groundwater concentration in MW-45.

Additional detections of VOCs in the second saturated unit include low level detections of acetone (MW-34, MW-45, MW-47S, MW-50 and MW-56), tert-butyl alcohol (MW-47S and MW-50), 2-butanone (MW-45, MW-56 and MW-47S), and chloromethane (MW-34 and MW-47S); all detections are below applicable USEPA MCLs or USEPA Tapwater RSLs. These VOCs have not historically been present at the site, and due to their low concentrations in numerous wells, are not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not

included on the results tables or figures, but are indicated in the laboratory analytical reports included in **Attachment 1**.

Analytical results for the second saturated unit are included on **Table 1**, **Table 4**, and **Figure 4**. A groundwater concentration trend graph for MW-34 is included on **Graph 1**.

Third Saturated Unit: Monitoring wells MW-42 and MW-53 were sampled and analyzed for VOCs. VOCs detected above screening criteria included cis-1,2-DCE, TCE, and VC. All three parameters were detected above the MCL in MW-42. No parameters exceeded screening criteria in MW-53.

Additional detections of VOCs in the third saturated unit include low level detections of acetone (MW-42 and MW-53), 1,1,2-trichloroethane (MW-42), 2-butanone (MW-53), tert-butyl alcohol (MW-53) and 1,2-dichloropropane (MW-42); all detections are below applicable USEPA MCLs or USEPA Tapwater RSLs. These VOCs have not historically been present at the site, and due to their low concentrations in numerous wells, are not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not included on the results tables or figures, but are indicated in the laboratory analytical reports included in **Attachment 1**.

Per the Revised Final CMI-LTM WP, results from the third saturated unit were not compared to VISL target groundwater concentrations. Analytical results for the third saturated unit are included on **Table 1** and **Figure 5**. Groundwater concentration trend graphs for MW-42 and MW-53 are included on **Graph 2** and **Graph 3**, respectively.

Fourth Saturated Unit: Monitoring well MW-43 was sampled and analyzed for VOCs. There were no VOC detections exceeding the MCL.

Detections of VOCs in the fourth saturated unit include low level detections of acetone (MW-43); however, this detection is below applicable USEPA MCLs or USEPA Tapwater RSLs. Acetone has not historically been present at the site, and due to the low concentrations in numerous wells, is not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not

included on the results tables or figures, but are indicated in the laboratory analytical reports included in **Attachment 1**.

Per the Revised Final CMI-LTM WP, results from the fourth saturated unit were not compared to VISL target groundwater concentrations. Analytical results for the fourth saturated unit are included on **Table 1** and **Figure 6**.

1,4-Dioxane

Select wells in the second and third saturated units were sampled for 1,4-dioxane. MW-34 and MW-45 (second saturated unit) and MW-42 and MW-53 (third saturated unit) were sampled for 1,4-dioxane; however, 1,4-dioxane was not detected in any of the groundwater samples during the 2019 second-half semi-annual LTM event. Analytical results are summarized in **Table 1**.

Vapor Intrusion

Groundwater samples collected from the first and second saturated unit were compared to VISL Target Groundwater Concentrations (**Table 4**). Sample results indicated that the first saturated unit had detections of VC and TCE that exceeded the VISL Target Groundwater Concentration and the second saturated unit had detections of TCE and VC that exceeded the VISL Target Groundwater Concentration; however, historic evaluation indicates that vapor intrusion is not a concern at the Site.

MONITORED NATURAL ATTENUATION (MNA) SUMMARY

MNA analyses was conducted during the 2019 second-half semi-annual LTM event in order to evaluate continued in-situ biodegradation via reductive dechlorination processes.

In accordance with the Revised Final CMI-LTM WP, MW-34, MW-42, and MW-53 were sampled for VOCs, MNA parameters (i.e., nitrate/nitrite, sulfate/sulfide, iron, manganese, methane, ethene, and ethane), and field parameters (dissolved oxygen [DO], oxidation reduction potential [ORP]), and pH). A detailed discussion of these parameters and relative favorability for in-situ biodegradation via reductive dechlorination is discussed below. A summary of environmental conditions supportive of reductive dechlorination for the three wells sampled during the 2019 second-half semi-annual LTM event has been included in **Table 5**.

Groundwater Field Parameters

DO is a measure of oxygen dissolved in a solution. Concentrations less than 0.5 mg/L are indicative of an environment potentially supportive of reductive dechlorination. All three wells (MW-34, MW-42, and MW-53) had concentrations less than 0.5 mg/L (0.32, 0.39, and 0.21 mg/L, respectively), indicating favorable conditions for reductive dechlorination.

ORP is a measure of the electron activity and an indicator of the relative tendency of a solution to accept or transfer electrons. Favorable conditions for natural reductive dechlorination are less than 50 mV with less than -100 mV being optimal. All three wells (MW-34, MW-42, and MW-53) had concentrations less than 50 mV (-65.2, -45.2, and -59.2 mV, respectively), indicating favorable conditions.

The optimal pH range for microbial activity is between 5 and 9. Biological activity is not likely to occur if the pH is below 5 or above 9. All three wells (MW-34, MW-42, and MW-53) exhibited favorable conditions with pH levels of 7.11, 7.19, and 7.36 units, respectively.

Sulfate Anions

Sulfate concentrations are monitored to evaluate the presence of alternate electron acceptors for microbial respiration. Sulfate was detected in all three wells including MW-34 (55,000 μ g/L), MW-42 (99,000 μ g/L), and MW-53 (35,000 μ g/L) at concentrations higher than the optimal level (<20,000 micrograms per liter [μ g/L]) for microbial activity. High sulfate levels may compete with the reductive dechlorination pathway.

Iron

Dissolved iron (i.e., ferrous iron) was detected in MW-42 (170 μ g/L), MW-53 (510 μ g/L), but concentrations did not indicate ideal conditions. Favorable concentrations of iron for in-situ reductive dechlorination are typically greater than (>) 1,000 μ g/L. Iron was not detected in MW-34.

Nitrate/Nitrite

Nitrogen, measured as nitrate and nitrite, was not detected in MW-42, MW-53 or MW-34. These results are favorable, as avorable conditions are generally less than 1,000 μ g/L.

Degradation-Daughter Products

Cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and VC are degradation products of TCE. The presence of these degradation daughter products are positive indications that reductive dechlorination is occurring. VC is the intermediate degradation step prior to the generation of ethene, followed by ethane. All four daughter products (with the exception of 1,1-DCE and VC in MW-53) were observed in all three wells (MW-34, MW-42, and MW-53).

As specified in the Revised Final CMI-LTM WP, groundwater concentration trend graphs were created for key monitoring wells (MW-34, MW-42, and MW-53) in order to evaluate the historical concentration trends of TCE and the degradation-daughter products over time. These concentration trend graphs are included as **Graph 1**, **Graph 2**, and **Graph 3**.

Dissolved Gases

The presence of the degradation products ethene and ethane tend to indicate that the complete destruction of TCE via the reductive pathway is occurring. Ethene was not detected in any of the wells (MW-34, MW-42, and MW-53) and Ethane was only detected in MW-34 (12 μ g/L). Elevated methane levels (>500 μ g/L) are generally indicative of strong reducing conditions supportive of reductive dechlorination. Methane was detected in all three monitoring wells (MW-34, MW-42, and MW-53); however, concentrations were not suggestive of strong reducing conditions (>500 μ g/L).

2019 SECOND-HALF SEMI-ANNUAL LTM EVENT CONCLUSIONS

VOCs

Based on the groundwater monitoring results from the 2019 second-half semi-annual LTM event, VOCs continue to exceed MCLs in certain wells as shown on **Table 1**. Specifically, cis-1,2-DCE, TCE, and VC continue to be detected in groundwater above MCLs at the Site. **Figures 3**, **4**, **5**, and **6** show VOCs detected above MCLs for 2019.

In the first saturated unit, cis-1,2-DCE was detected above its MCL in two monitoring wells (MW-38 and MW-39) and VC was detected above its MCL in three monitoring wells (MW-38, MW-39, and MW-50S). In the second saturated unit, cis-1,2- DCE was detected above its MCLs in two monitoring wells (MW-34 and MW-45), TCE was detected above its MCL in MW-34, and

VC was detected above its MCL in three monitoring wells (MW-34, MW-45 and MW-50). In the third saturated unit, cis-1,2-DCE, TCE, and VC were detected above their respective MCLs in MW-42. In the fourth saturated unit, there were no VOC detections exceeding their respective MCLs. The constituent 1,4-dioxane was not detected in any of the samples.

The additional detections of VOCs at the site include low level detections of acetone, 2-butanone, tert-butyl alcohol, chloromethane, carbon disulfide, 1,1,2-trichloroethane, and 1,2-dichloropropane; all detections are below applicable USEPA MCLs or USEPA Tapwater RSLs. These VOCs have not historically been present at the site, and due to their low, estimated, concentrations in multiple wells, are not anticipated to be indicative of site conditions. These detections are most likely due to cross-contamination, laboratory contamination or other interference. For those reasons, they are not included on the results tables or figures, but are indicated in the laboratory analytical reports in **Attachment 1**. These will continue to be monitored during the next semi-annual LTM event.

Monitored Natural Attenuation

Analytical results and groundwater field parameters from the 2019 second-half semi-annual LTM event were indicative of reductive dechlorination of TCE as evidenced by detections of TCE daughter products including trans-1,2-DCE, cis-1,2-DCE, 1,1-DCE, VC, ethene, ethane, and methane. Measured field parameters (ORP, pH, and DO) were also indicative of reducing conditions conducive to dechlorination.

GRAVEL LOT INSPECTION

As required by the MMP, the gravel lot was thoroughly graded in October 2017 and, at the request of EPA, a survey of the gravel lot was conducted on May 15, 2018 in order to establish a benchmark condition for which semi-annual inspections will be compared to. A figure showing the gravel lot area to be inspected is included in **Attachment C**.

In accordance with the MMP (BB&E, 2017), the 2019 second half semi-annual gravel lot inspection was conducted on September 9, 2019 to evaluate if it is functioning as intended (i.e., to protect against direct contact with impacted subsurface soils) and determine if any maintenance of the lot was required. The gravel lot was inspected for areas where the gravel had been worn down, and evidence of erosion, burrowing animals, poor drainage or ponding, and any deep potholes

(areas with no gravel cover). There were no necessary repairs or areas where replacement of the gravel was necessary during the September 2019 inspection. In accordance with the MMP (BB&E, 2017), if repairs or replacement of the gravel cover are determined to be necessary during any future semi-annual inspections, repairs will be completed within 60 calendar days to continue to protect against exposure to underlying contaminants in the subsurface soils.

The inspection form and photographs taken during the inspection to document the overall condition of the gravel cover throughout the lot are included in **Attachment C**.

FINANCIAL ASSURANCE MECHANISM (FAM)

Based on LTM sampling results to date, site conditions remain unchanged, which does not warrant any updates to the FAM; therefore, the FAM remains unchanged since its preparation in 2018. The FAM will be re-evaluated for potential updates following the 2020 first semi-annual sampling event.

RECOMMENDATIONS

Groundwater monitoring and gravel cap inspections are recommended to be continued on a semi-annual basis in accordance with the Revised Final CMI-LTM WP for a period of five years. The semi-annual LTM sampling and analysis will be conducted in accordance with the U.S. EPA approved QAPP (BB&E, 2014). Gravel cap inspections will be conducted in accordance with the MMP (BB&E, 2017). As noted above, following the five years of semi-annual sampling, an evaluation will be conducted to determine the effectiveness of the MNA groundwater remedy. The evaluation results, with recommendations, will be submitted to U.S. EPA for review. The next semi-annual LTM event is currently scheduled for April 2020.

If you have any questions or comments regarding this report, please contact me at 248-489-9636 ext. 317 or clang@bbande.com.

Sincerely,

Cindy Lang
Project Manager

BB&E, Inc.

cc:

Mr. Brian Calhoun – Collis/SSW

Mr. Charlie Denton – Barnes & Thornburg, LLP

Enclosures:

Figure 1 – Site Location Map

Figure 2 – Site Features Map

Figure 3 – Detections Summary First Saturated Unit September 2019

Figure 4 – Detections Summary Second Saturated Unit September 2019

Figure 5 – Detections Summary Third Saturated Unit September 2019

Figure 6 – Detections Summary Fourth Saturated Unit September 2019

Figure 7 – Potentiometric Surface Map First Saturated Unit September 2019

Figure 8 – Potentiometric Surface Map Second Saturated Unit September 2019

Table 1 – Groundwater Data Summary

Table 2 – Water Elevations Summary

Table 3 – Groundwater Field Parameter Readings

Table 4 – Vapor Intrusion Screening

Table 5 – LTM Groundwater MNA Results

Graph 1 – MW-34 Concentration Trends

Graph 2 – MW-42 Concentration Trends

Graph 3 – MW-53 Concentration Trends

Attachment A - Laboratory Analytical Data

Attachment B - Field Notes

Attachment C – Gravel Lot Inspection

REFERENCES

- BB&E, Inc. (BB&E), 2014. Final RCRA Corrective Measures Activities Quality Assurance Project Plan. August.
- BB&E, 2017. Final RCRA Corrective Measure Activities Media Management Plan. December.
- BB&E, 2018. Final Corrective Measures Study Report. April.
- BB&E, 2019a. Revised Final Corrective Measures Implementation LTM Groundwater Monitoring Work Plan. April.
- BB&E, 2019b. Final Summary Report for 2019 Monitoring Well Abandonment Activities. May.
- Interstate Technology and Regulatory Council, 1999. Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices. September.
- United States Environmental Protection Agency (U.S. EPA), 2018. *Vapor Intrusion Screening Level Calculator*. Retrieved from: https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator. May.

LTM Monitoring Well Locations

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:

- - Manufacturer's Ditch
 - Property Boundary (Approximate)

Monitoring Wells

- First Saturated Unit
- Second Saturated Unit
- Third Saturated Unit
- Fourth Saturated Unit
- LTM Monitoring Well

Note: LTM = long term monitoring

Detections Summary First Saturated Unit September 2019

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:

- Wells Sampled Unit 1
- Wells Not Sampled Unit 1 Manufacturer's Ditch Property Boundary (Approximate)

- Only results from monitoring wells/piezometers sampled during the Corrective Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.
 Yellow highlighting indicates exceedance of United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) or USEPA May 2019 Tapwater Regional Screening Level (RSL) Criteria, if no MCL is available.

ND = not detected μg/L = micrograms per liter

Detections Summary Second Saturated Unit September 2019

Collis, Inc. Manufacturing Facility
Clinton, Iowa

Legend:

- Location Sampled
- Location Not Sampled
- Manufacturer's Ditch
- Property Boundary (Approximate)

NOTES:

- Only results from monitoring wells sampled during the Corrective Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.
- 2. Yellow highlighting indicates exceedance of May 2019
 United States Environmental Protection Agency (USEPA)
 Maximum Contaminant Level (MCL) or USEPA Tapwater
 Regional Screening Level (RSL) Criteria, if no MCL is available.

ND = not detected μg/L = micrograms per liter

Detections Summary Third Saturated Unit September 2019

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:

- Location Sampled
- Location Not Sampled
- Manufacturer's Ditch
 Property Boundary (Approximate)

NOTES:

- Only results from monitoring wells sampled during the Corrective Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.
- 2. Yellow highlighting indicates exceedance of the May 2019 United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) or USEPA Tapwater Regional Screening Level (RSL) Criteria, if no MCL is available.
- J = the reported value is an estimate NA = not available ND = not detected
- µg/L = micrograms per liter

Detections Summary Fourth Saturated Unit September 2019

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend:

- Location Sampled
- Location Not Sampled
 Manufacturer's Ditch
 Property Boundary (Approximate)

NOTES

- Only results from monitoring wells sampled during the Corrective Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.
- Measures Implementation (CMI) Long Term Monitoring (LTM) are included on this figure.

 2. Yellow highlighting indicates exceedance of the May 2019
 United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) or USEPA Tapwater Regional Screening Level (RSL) Criteria, if no MCL is available.

ND = not detected µg/L = micrograms per liter

is>w√collistigures\u20z80z80z5 - 2019 LTM Monitoring\2019 Second semi-annual LTMGIS files\Figure 6 - SSW_Collis_Results_4thsatunit_Sept19

Potentiometric Surface Map First Saturated Unit September 2019

Collis, Inc. Manufacturing Facility
Clinton, Iowa

Legen

- Monitoring Well/Piezometer Location (Elevations included)
- Monitoring Well/Piezometer Location
- (Elevations excluded)
- Water Table Elevation (dashed where inferred)
- → Groundwater Flow Direction
 - Manufacturer's Ditch
 - Property Boundary (Approximate)

NOTES:

- Monitoring wells shaded in black were excluded from use in generating this potentiometric surface map due to belonging to a different hydrological unit.
- 2. Monitoring wells MW-42 and MW-53 are located in the third saturated unit and MW-43 belongs to the deep bedrock hydrological unit. A separate figure was not created for these hydrological units as data from two wells is inadequate for accurate creation of groundwater contours.
- 3. Due to limitations of software interpolation, this drawing is intended to be used as an overview of the general groundwater flow conditions at the site. Groundwater contours may not pass through the included monitoring wells due to the display of groundwater contours at a constant interval. Contour placement represents an interpolation between two or more monitoring wells with known water levels, observed at the time of sampling; therefore, contours are inferred.
- 4. Groundwater contours developed using ArcGIS Desktop 10.6 Spatial Analyst Extension.

Potentiometric Surface Map Second Saturated Unit September 2019

Collis, Inc. Manufacturing Facility Clinton, Iowa

Legend

- Monitoring Well/Piezometer Location (Elevations included)
- Monitoring Well/Piezometer Location (Elevations excluded)
- Potentiometric Surface (dashed where inferred)
- → Groundwater Flow Direction
 - Manufacturer's Ditch
 - Property Boundary (Approximate)

NOTES:

- 1. Monitoring wells shaded in black were excluded from use in generating this potentiometric surface map either due to belonging to a different hydrological unit, or due to artesian flow conditions. Wells with artesian flow conditions in the second saturated unit are identified as MW-45
- Monitoring wells MW-42 and MW-53 are located in the third saturated unit and MW-43 belongs to the deep bedrock hydrological unit. A separate figure was not created for these hydrological units as data from two wells is inadequate for accurate creation of groundwater contours.
- 3. Due to limitations of software interpolation, this drawing is intended to be used as an overview of the general groundwater flow conditions at the site. Groundwater contours may not pass through the included monitoring wells due to the display of groundwater contours at a constant interval. Contour placement represents an interpolation between two or more monitoring wells with known water levels, observed at the time of sampling; therefore, contours are inferred.
- 4. Groundwater contours developed using ArcGIS Desktop 10.6 Spatial Analyst Extension.

Service Layer Credits Source Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community KVB -9/18/2019

TABLE 1 GROUNDWATER DATA SUMMARY SSW COLLIS CLINTON, IA

			First Satura	ated Grou	ndwater Unit					15 10 10 10 10
	PARAMETERS (mg/L)	cis-1,2-DCE	trans-1,2- DCE	TCE	Vinyl Chloride	1,1-DCE	Lead	1,4- Dioxane	Methane	Ethane
	CAS#	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4	7439-92-1	123-91-1	74-82-8	74-84-0
	EPA MAY 2019 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.036	0.00028	0.000019	0.028	0.015	0.00046	NA	NA
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.07	0.100	0.005	0.002	0.007	0.015	NA	NA	NA
MW-38	10/15/14	0.110	0.0070	ND	0.093	ND	NS	NS	NS	NS
	3/19/15	0.10	0.0052	ND	0.074	ND	NS	NS	NS	NS
	5/13/15 9/18/15	0.110 0.100	0.0053 0.0055	ND ND	0.088 0.069	ND ND	NS NS	NS NS	NS NS	NS NS
	9/29/16	0.099	0.0054	ND	0.084	ND	NS	NS	NS	NS
	12/15/16	0.088	0.0032	ND	0.028	ND	NS	NS	NS	NS
	2/28/17	0.087	0.0032	ND	0.084	ND	NS	NS	NS	NS
	5/4/17	0.12	0.0077	ND	0.081	ND	NS	NS	NS	NS
	6/19/18 10/1/18	0.12 0.13	0.0052 0.0056	ND ND	0.082 0.097	ND ND	NS NS	NS NS	NS NS	NS NS
	4/8/19	0.10	0.0032	ND	0.055	ND	NS	NS	NS	NS
	9/9/19	0.13	0.0036	ND	0.083	ND	NS	NS	NS	NS
MW-39	10/14/14	0.38	0.024	ND	0.16	0.0026	NS	NS	NS	NS
	3/19/15 5/13/15	0.3 0.33	0.017 0.016	ND ND	0.096 0.11	0.0018 0.0018	NS NS	NS NS	NS NS	NS NS
	9/18/15	0.25	0.016	ND	0.086	0.0018	NS	NS	NS	NS
	9/29/16	0.19	0.015	ND	0.082	0.0016	NS	NS	NS	NS
	12/15/16 ¹	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/2/17	0.26	0.011	ND	0.065	0.0012	NS	NS	NS	NS
	5/4/17 6/19/18	0.27 0.29	0.016 0.016	ND ND	0.093 0.085	0.0019 0.0019	NS NS	NS NS	NS NS	NS NS
	6/19/18 DUP	0.29	0.016	ND	0.085	0.0019	NS NS	NS NS	NS NS	NS
	10/2/18	0.21	0.011	ND	0.058	0.0012	NS	NS	NS	NS
	4/9/19	0.21	0.0088	ND	0.075	0.001	NS	NS	NS	NS
	9/10/19	0.23	0.0110	ND	0.11	0.0015	NS	NS	NS	NS
MW-50S	9/10/2019 DUP 10/13/14	0.24 ND	0.0110 ND	0.002 ND	0.1 0.0068	0.0016 ND	NS NS	NS NS	NS NS	NS NS
14144-303	3/18/15	0.0056	ND	ND	0.046	ND	NS	NS	NS	NS
	5/13/15	0.0079	ND	ND	0.072	ND	NS	NS	NS	NS
	9/17/15	0.0086	ND	ND	0.075	ND	NS	NS	NS	NS
	9/29/16 12/15/16	0.0068 0.0098	ND ND	ND ND	0.042 0.043	ND ND	NS NS	NS NS	NS NS	NS NS
	3/1/17	0.0038	ND	ND	0.025	ND	NS	NS	NS	NS
	3/1/17 DUP	0.0088	ND	ND	0.027	ND	NS	NS	NS	NS
	5/4/17	0.015	ND	ND	0.052	ND	NS	NS	NS	NS
	6/20/18	0.0081	ND	ND	0.045	ND	NS	NS	NS	NS
	10/2/18	0.0058	ND	ND	0.030	ND	NS	NS	NS	NS
	4/9/19	0.0077	ND	ND	0.037	ND	NS	NS	NS	NS
PZ-47	9/9/19 3/12/12	0.0061 NS	ND NS	ND NS	0.043 NS	ND NS	NS 3.9	NS NS	NS NS	NS NS
F2-41	6/12/12	NS	NS	NS	NS NS	NS	1.1	NS	NS	NS
	10/13/14 ²	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/15	NS	NS	NS	NS	NS	0.098	NS	NS	NS
	9/28/16	ND	ND	ND	ND ND	ND	NS	NS	NS	NS
	12/13/16 3/2/17	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS
	5/2/17	ND ND	ND	ND	ND ND	ND	NS	NS	NS	NS
	6/18/18	ND	ND	ND	ND	ND	NS	NS	NS	NS
	10/1/18	ND	ND	ND	ND	ND	NS	NS	NS	NS
	10/1/18 DUP 4/8/19	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS
	9/9/19	ND ND	ND ND	ND	ND ND	ND	NS NS	NS NS	NS NS	NS
PZ-48	9/28/16	ND	ND	ND	ND	ND	NS	NS	NS	NS
	12/13/16	ND	ND	ND	ND	ND	NS	NS	NS	NS
	3/2/17	ND ND	ND ND	ND	ND ND	ND	NS NS	NS NS	NS NS	NS NS
	5/2/17 6/18/18	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS
	10/1/18	ND	ND	ND	ND ND	ND	NS	NS	NS	NS
	4/8/19	ND	ND	ND	ND	ND	NS	NS	NS	NS
	9/9/19	ND	ND	ND	ND	ND	NS	NS	NS	NS

Notes:

Exceeds EPA Region VI Drinking Water MCLs or May 2019 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first-semiannual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted October 2018. The 2019 first semi-annual LTM event was conducted April and the second

semi-annual LTM was conducted in September. mg/L = milligrams per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene

EPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level MW - Monitoring Well

TCE- Trichloroethene

RSL - Regional Screening Level NA - Not Available

ND - Non-Detect NS - Not Sampled PZ - Piezometer

¹ Not sampled due to inclement weather.

² PZ-47 was damaged and could not be sampled. Only compounds that were detected in one or more samples are shown in the table.

	Second Saturated Groundwater Unit														
	PARAMETERS (mg/L)	cis-1,2-DCE	trans-1,2-DCE	TCE	Vinyl Chloride	1,1-DCE	1,4-Dioxane	Methane	Ethane	Ethene	Iron	Manganese	Chloride	Sulfate	Nitrogen, Nitrate-Nitrite
	CAS#	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4	123-91-1	74-82-8	74-84-0	74-85-1	7439-89-6	7439-96-5	10043-52-4	18785-72-3	NA
	EPA MAY 2019 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.036	0.00028	0.000019	0.028	0.00046	NA	NA	NA	1.40	NA	NA	NA	NA
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.07	0.100	0.00500	0.0020	0.007	NA	NA	NA	NA	NA	NA	NA	NA	10
MW-34	3/16/12	0.091	0.0033	0.0170	ND	ND	NS	0.13	0.011	NS	NS	NS	NS	NS	NS
	6/13/12	0.1	0.0037	0.0270	0.00690	ND	NS	NS	0.0024	NS	NS	NS	NS	NS	NS
	9/26/2012	0.039	0.0018	0.0200	ND	ND	NS	0.24	0.013	NS	NS	NS	NS	NS	NS
	11/30/12	0.033	0.0013	0.0160	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS
	10/17/14	0.084	0.0031	0.0230	0.00950	ND	ND	0.19	0.012	ND	0.14	0.33	72	69	0.028
	3/19/15	0.09	0.0029	0.0210	0.00670	ND	ND	0.15	0.011	ND	ND	0.27	68	78	0.12
	5/13/15	0.089	0.0026	0.0170	0.02000	ND	ND	0.28	0.017	0.00091 J	ND	0.29	78	78	ND
	9/17/15	0.11	0.0035	0.0280	0.00400	ND	0.00071	0.24	0.012	ND	0.02 J	0.44	68	75	0.019 J
	9/29/16	0.1	0.0035	0.0240	0.00460	ND	ND	0.38	0.02	ND	0.051 J	0.51	80	77	ND
	12/15/16	0.12	0.0036	0.0230	0.00230	ND	ND	0.21	0.011	ND	0.03 J	0.35	60	68	0.015 J
	12/15/2016 DUP	0.13	0.0036	0.0240	0.00260	ND	ND	0.22	0.011	ND	0.018 J	0.38	42	68	ND
	3/1/17	0.12	0.0021	0.0170	0.00270	0.00045 J	ND	0.18	0.012	ND	0.0059 J	0.074	77	74	0.033
	5/4/17	0.11	0.0040	0.0140	0.01500	ND	ND	0.32	0.02	ND	0.055 J	0.75	130	100	ND
	5/4/2017 DUP	0.12	0.0040	0.0130	0.01400	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/18	0.1	0.0024	0.0160	0.00240	ND	ND	0.23	0.016	ND	0.033 J	0.69	77	71	ND
	10/1/18	0.086	0.0031	0.0160	0.00150	0.00067 J	ND	0.19	0.017	0.0026 J	0.019 J	0.51	45	68	ND
	4/9/19	0.065	0.0010	0.0096	0.00066 J	ND	ND	0.044	ND	ND	ND	0.12	75	65	0.82
	9/10/19	0.12	0.0031	0.0130	0.00270	0.00084 J	ND	0.17	0.012	ND	ND	0.35	59	55	ND
MW-45	03/16/12	0.019	0.0011	0.00420	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS
	06/13/12	0.015	ND	0.00400	ND	ND	NS	NS	ND	NS	NS	NS	NS	NS	NS
	09/26/12	0.01	ND	0.00350	ND	ND	NS	0.025	ND	NS	NS	NS	NS	NS	NS
	11/30/12	0.01	ND	0.00400	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS
	10/16/14	0.032	0.0013	0.00520	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
	03/18/15	0.011	ND	0.00360	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
	05/12/15	0.02	0.00096 J	0.00590	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
	09/15/15	0.023	ND	0.00460	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
	09/28/16	0.084	0.0029	0.00530	0.00420	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/16 DUP	0.083	0.0028	0.00530	0.00420	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/16	0.031	ND ND	0.00310	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/14/16 DUP	0.035	ND	0.00430	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	02/28/17	0.019	0.00081 J	0.00480	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	05/04/17	0.067	0.00250	0.00620	ND ND	ND	NS	NS	NS	NS.	NS	NS	NS	NS	NS
	06/19/18	0.048	0.0015	0.00420	ND ND	ND	ND	NS	NS	NS NS	NS	NS	NS NS	NS	NS
	10/2/18	0.04	0.0014	0.00400	ND ND	ND	ND	NS	NS	NS	NS	NS	NS NS	NS	NS
	4/8/19	0.087	0.0025	0.00400	0.0042	ND	ND ND	NS	NS	NS NS	NS	NS	NS	NS	NS
	9/9/19	0.085	0.0023	0.00320	0.0042	ND	ND ND	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS
otes:	3/3/13	0.000	0.0013	0.00320	0.0047	IND	110	110	1 110	140	110	1 110	140	110	1 110

Exceeds EPA Region VI Drinking Water MCLs or May 2019 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

Only compounds that were detected in one or more samples are shown in the table. Phase I, II, and III detections are also shown on this table. Phase I was conducted in March, June, September, and November 2012. Phase II was conducted October 2014, March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first-semiannual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted April and the second semi-annual LTM event was conducted in September.

mg/L = milligrams per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene
EPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level
MW - Monitoring Well
RSL - Regional Screening Level
NA - Not Available
ND - Non-Detect

NS - Not Sampled

PZ - Piezometer

Not sampled due to inclement weather.

Estate Pipe	Second Saturated Groundwater Unit														
	PARAMETERS (mg/L)	cis-1,2-DCE	trans-1,2-DCE	TCE	Vinyl Chloride	1,1-DCE	1,4-Dioxane	Methane	Ethane	Ethene	Iron	Manganese	Chloride	Sulfate	Nitrogen, Nitrate-Nitrite
	CAS#	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4	123-91-1	74-82-8	74-84-0	74-85-1	7439-89-6	7439-96-5	10043-52-4	18785-72-3	NA
	EPA MAY 2019 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.036	0.00028	0.000019	0.028	0.00046	NA	NA	NA	1.40	NA	NA	NA	NA
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.07	0.100	0.00500	0.0020	0.007	NA	NA	NA	NA	NA	NA	NA	NA	10
MW-47S	5/5/10	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/14/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/12/12	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/14/14	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/16/15	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/11/15	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/15/15	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/28/16	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/15/16 ¹	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/28/17	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/2/17	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/18	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/1/18	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/8/19	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/9/19	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-50	5/4/10	0.0468	ND	ND	0.0732	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/15/14	0.042	ND	ND	0.057	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/18/15	0.028	ND	ND	0.043	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/13/15	0.029	ND	ND	0.039	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/17/15	0.018	ND	ND	0.052	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/29/16	0.031	ND	ND	0.045	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/15/16	0.035	ND	ND	0.056	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/1/17	0.032	ND	ND	0.039	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/4/17	0.044	ND	ND	0.065	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/20/18	0.028	ND	ND	0.043	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/1/18	0.027	ND	ND	0.040	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/9/19	0.031	ND	ND	0.040	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/9/19	0.035	ND	ND	0.057	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-56	10/17/14	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS
	3/17/15	ND	ND I	ND	ND ND	ND	ND	NS	NS	NS	NS	NS	NS NS	NS	NS
	5/12/15	ND	ND I	ND	ND I	ND	ND	NS	NS	NS	NS	NS	NS NS	NS	NS
	9/17/15	ND	ND ND	ND	ND ND	ND	ND NC	NS	NS NC	NS	NS NS	NS	NS NC	NS NS	NS NC
	9/29/16	ND	ND I	ND	ND NO	ND	NS	NS	NS	NS	NS NC	NS	NS NS		NS
	12/15/161	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/28/17	ND	ND I	ND	ND ND	ND	NS	NS	NS	NS	NS	NS	NS NS	NS	NS
	5/2/17	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	6/19/18	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/2/18	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/8/19	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/8/2019 (DUP)	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/9/19	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS

Exceeds EPA Region VI Drinking Water MCLs or May 2019 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

Only compounds that were detected in one or more samples are shown in the table.

Phase I, II, and III detections are also shown on this table. Phase I was conducted in March, June, September, and November 2012. Phase II was conducted October 2014, March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first-semiannual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted April and the second semi-annual LTM event was conducted in September.

mg/L = milligrams per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene

EPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level MW - Monitoring Well RSL - Regional Screening Level

NA - Not Available

ND - Non-Detect

NS - Not Sampled

PZ - Piezometer

Not sampled due to inclement weather.

Third Saturated Groundwater Unit															
	PARAMETERS (mg/L)	cis-1,2-DCE	trans-1,2-DCE	TCE	Vinyl Chloride	1,1-DCE	1,4-Dioxane	Methane	Ethane	Ethene	Iron	Manganese	Chloride	Sulfate	Nitrogen, Nitrate-Nitrite
	CAS#	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4	123-91-1	74-82-8	74-84-0	74-85-1	7439-89-6	7439-96-5	10043-52-4	18785-72-3	NA
	EPA MAY 2019 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.036	0.00028	0.000019	0.028	0.00046	NA	NA	NA	1.4	NA	NA	NA	NA
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.0700	100	0.0050	0.002	0.007	NA	NA	NA	NA	NA	NA	NA	NA	10
MW-42	3/16/12	0.190	0.0077	0.240	0.043	0.003	NS	0.22	0.007	NS	NS	NS	NS	NS	NS
	6/14/12	0.220	0.0076	0.290	0.04	0.0034	NS	NS	0.0028	NS	NS	NS	NS	NS	NS
	9/26/12	0.180	0.0074	0.170	0.045	0.0031	NS	ND	ND	NS	NS	NS	NS	NS	NS
	11/29/12	0.180	0.007	0.160	0.043	0.0034	NS	0.25	0.013	NS	NS	NS	NS	NS	NS
	10/16/14	0.181	0.0077	0.260	0.039	0.005	ND	0.30	0.014	ND	0.071	0.32	77	100	ND
	3/20/15	0.180	0.0063	0.160	0.029	0.003	ND	0.19	0.0068	0.00035 J	0.084	0.17	65	100	0.093
	5/13/15	0.230	0.006	0.160	0.026	0.0029	0.0098	0.21	0.0057	0.00045 J	0.093	0.26	60	97	ND
	9/15/15	0.330	0.0078	0.087	0.038	0.0031	0.0011	0.18	0.0054	ND	0.034	0.27	0.059	0.096	ND
	9/27/16	0.360	0.0095	0.240	0.032	0.0035	ND	0.25	0.0068	ND	0.11	0.30	60	110	ND
	12/13/16	0.350	0.0088	0.230	0.032	0.0035	ND	0.27	0.0077	ND	0.16	0.28	60	110	ND
	3/2/17	0.360	0.0082	0.270	0.027	0.003	ND	0.27	0.0068	ND	0.24	0.30	60	100	ND
	5/4/17	0.340	0.011	0.300	0.031	0.0034	ND	0.18	0.0041	0.00072 J	0.13	0.32	61	98	ND
	6/19/18	0.250	0.0078	0.180	0.037	0.0025	ND	0.260	0.012	0.0051	0.12	0.34	75	100	ND
	6/19/18 DUP	0.240	0.0092	0.190	0.032	0.0029	ND	0.240	0.011	0.0037 J	0.12	0.3	73	100	ND
	10/1/18	0.320	0.011	0.260	0.027	0.0035	ND	0.190	0.0091	0.0015 J	0.049 J	0.28	57	110	ND
	10/1/18 DUP	0.260	0.010	0.240	0.028	0.0036	ND	0.190	0.0097	0.0019 J	0.055 J	0.33	50	110	ND
	4/9/2019	0.280	0.016	0.250	0.047	0.0026	ND	0.310	ND	ND	0.1	0.29	68	100	ND
	4/9/2019 DUP	0.280	0.010	0.290	0.049	0.0026	ND	0.280	ND	ND	0.078 J	0.3	72	110	ND
	9/10/2019	0.260	0.0098	0.220	0.039	0.0036	ND	0.240	0.01	ND	0.17	0.31	67	99	ND
MW-53	3/16/12	0.0240	0.0012	ND	ND	ND	NS	0.03	ND	NS	NS	NS	NS	NS	NS
	6/13/12	0.0180	ND	ND	0.0016	ND	NS	NS	ND	NS	NS	NS	NS	NS	NS
	9/26/12	0.0160	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS
	11/29/12	0.0031	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS
	10/13/14	0.0043	ND	ND	ND	ND	NS	0.026	ND	ND	0.24	0.18	30	56	ND
	3/17/15	0.0170	ND	ND	0.0016	ND	NS	0.025	ND	ND	0.024 J	0.049	25	44	ND
	5/12/15	0.0150	0.00075 J	ND	0.0014	ND	NS	0.023	ND	ND	0.46	0.048	24	40	ND
	9/16/15	0.0190	ND	ND	0.0014	ND	NS	0.03	ND	ND	0.11	0.048	23	44	0.011 J
	9/29/16	0.0170	ND	ND	ND	ND	ND	0.031	ND	ND	0.49	0.450	60	41	ND
	12/14/16	0.0067	ND	ND	ND	ND	ND	0.01	ND	ND	0.43	0.042	25	42	ND
	2/28/17	0.0064	0.00035 J	ND	0.00056 J	ND	ND	0.018	ND	ND	1.4	0.043	22	41	ND
	2/28/17 DUP	0.0070	0.00036 J	ND	0.00070 J	ND	ND	0.014	ND	ND	0.98	0.040	21	41	ND
	5/4/17	0.0074	ND ND	ND	ND	ND	ND	0.011	ND	ND	0.62	0.049	24	40	ND
	5/4/17 DUP	0.0076	ND ND	ND	ND 0.00005 I	ND	ND ND	0.0098	ND	ND	0.52	0.048	23	39	ND
	6/19/18	0.0095	ND	ND	0.00085 J	ND	ND	0.013	ND 0.0047.1	ND 0.00074	0.32	0.049	22	37	ND
	10/2/18	0.0120	0.00067 J	ND	0.0012	ND	ND	0.019	0.0017 J	0.00071 J	0.096	0.049	30	35	ND
	4/8/19	0.0120	0.00059 J	ND	0.0012	ND	ND	0.021	ND	ND	0.18	0.045	23	35	ND
	9/9/19	0.0110	0.00056 J	ND	ND	ND	ND	0.012	ND	ND	0.27	0.048	18	35	ND
图 生活 是 是 是 是 是 是 是	9/9/2019 (DUP)	0.0110	0.00059 J	ND	ND	ND	ND	0.014	ND	ND	0.51	0.047	18	34	ND

Exceeds EPA Region VI Drinking Water MCLs or May 2019 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

Only compounds that were detected in one or more samples are shown in the table.

Phase I, II, and III detections are also shown on this table. Phase I was conducted in March, June, September, and November 2012. Phase II was conducted October 2014, March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. the 2018 first semi-annual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted in April and the second semi-annual LTM event was conducted in September.

mg/L = milligrams per liter
CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene
EPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level

MW - Monitoring Well
RSL - Regional Screening Level

NA - Not Available

ND - Non-Detect NS - Not Sampled

PZ - Piezometer

TABLE 1 GROUNDWATER DATA SUMMARY SSW COLLIS CLINTON, IA

	Fourth Saturated Grou	ndwater Unit		
	PARAMETERS (mg/L)	cis-1,2-DCE	TCE	Vinyl Chloride
	CAS#	156-59-2	79-01-6	75-01-4
	EPA MAY 2019 RSL TAPWATER SCREENING CRITERIA (mg/L)	0.0036	0.00028	0.000019
MONITORING WELL	EPA DRINKING WATER MCL (mg/L)	0.0700	0.005	0.002
MW-43	10/15/14	0.0068	ND	ND
	3/18/15	0.0056	ND	0.0015
	5/12/15	0.0019	ND	0.0019
	9/16/15	0.0013	ND	0.0039
	9/29/16	0.0045	ND	0.0022
	12/15/16	ND	ND	ND
	2/28/17	0.00058 J	ND	0.0027
	5/4/17	0.0049	ND	ND
	6/19/18	0.003	ND	0.0024
	10/1/18	0.0028	ND	0.0027
	4/8/19	0.0023	ND	ND
	9/9/19	0.0022	ND	ND

Notes:

Exceeds EPA Region VI Drinking Water MCLs or May 2019 (most current) Tapwater RSLs (Target Risk=1E-06, Hazard Quotient=0.1), if no MCL exists.

Only compounds that were detected in one or more samples are shown in the table.

Phase I, II, and III detections are also shown on this table. Phase I was conducted in March, June, September, and November 2012. Phase II was conducted October 2014, March, May, and September 2015. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first-semiannual LTM event was conducted June 2018 and the second semi-annual LTM event was conducted October 2018. The 2019 first semi-annual LTM event was conducted in April and the second semi-annual LTM event was conducted in September.

mg/L = millograms per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene

EPA - United States Environmental Protection Agency

MCL - Maximum Contaminant Level MW - Monitoring Well RSL - Regional Screening Level NA - Not Available

ND - Non-Detect

NS - Not Sampled

PZ - Piezometer

TABLE 2 WATER ELEVATION SUMMARY 2019 SECOND-SEMI ANNUAL LTM GROUNDWATER MONITORING COLLIS, INC., CLINTON IOWA

Well ID	TOC ELEVATION (ft amsl)	Constructed Well Depth (ft bgs)	Nominal Screen Interval (ft bgs)	Time	DTW (from TOC)	Elevation (ft amsl)		
	Measuremen	t Date:			9/9/19			
MW-34	589.29	31.6	25-30	740	740 5.34 583.9			
MW-38	585.47	9.95	5-10	732	4.44	581.03		
MW-39	587.47	13.91	9-14	730	4.10	583.37		
MW-42	589.25	50.2	42-47	737	4.80	584.45		
MW-43*	585.21	99.38	94.75-99.75	734	0.0	585.21		
MW-45*	582.41	25.59	19-24	802	0.0	582.41		
MW-47S	583.17	17.93	13-18	745	3.01	580.16		
MW-50	587.27	24.77	20-25	757	3.54	583.73		
MW-50S	587.51	12.28	7.5-12.5	755	3.61	583.9		
MW-53*	582.73	52.24	45-50	805	0.0	582.73		
MW-56	582.33	30	25-30	810	2.35	579.98		
PZ-47	583.17	10.89	1-11	747	3.25	579.92		
PZ-48	584.27	10.65	1-11	750	5.20	579.07		

Notes:

* Artesian conditions identified

DTW - Depth to water

TOC - Top of casing

ft bgs - feet below ground surface

ft amsl - feet above mean sea level

Table 3
Groundwater Field Parameter Readings
2019 Second Semi-Annual LTM Groundwater Monitoring
Collis Inc., Clinton, Iowa

Monitoring Well	Collection Date	Temperature (°C)	pH (S.U.)	Specific Conductivity (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
	9/28/16	17.61	6.61	0.962	0.38	5.3	-30.6
	12/13/16	7.61	6.65	1.05	6.13	1000	-79.6
	2/28/17*	NA NA	NA	NA NA	NA	NA NA	NA NA
PZ-47	5/2/17	10.36	6.53	0.791	2.48	300 44.7	35.1
	6/18/2018	19.11	7.11	0.953	9.22	46.2	59.9 -76.5
	10/1/2018	15.61 7.17	7.52 6.26	0.926 0.644	2.97	7.6	24.8
	4/8/2019 9/9/2019	16.16	6.88	0.807	0.42	11.7	-69.9
	9/28/16	16.61	6.73	0.902	1.82	75.3	-1.8
	12/13/16	10.78	6.9	0.873	5.48	OOR	-270
	2/28/17	9.67	6.65	0.748	33.1	167	151.8
07.40	5/2/17	11.76	6.77	0.595	4.08	5.45	79.2
PZ-48	6/18/18	20.55	7.45	0.677	9.8	46.8	53.9
	10/1/18	16.76	7.48	0.631	3.18	44.2	24.2
	4/8/19	5.7	6.49	0.458	4.2	26.6	52
	9/9/19	16.77	7.2	0.566	0.98	37.7	-40.2
	9/29/16	14.76	7	1.183	0.12	1.75	-46.8
	12/15/16	11.7	7.08	0.999	2.55	1.8	228.6
	3/1/17	11.09	7.04	0.714	0.64	19	-33.2
MW-34	5/4/17	12.45	7.49	1.014	0.79	1.67	-11.9 0.7
	6/19/18	13.83	7.17	0.975 0.835	0.46	1.36 2.4	-21.6
	10/1/18 4/9/19	15.04 11.71	7.84 6.9	0.875	1.59	1.37	51.6
	9/10/19	16.26	7.11	0.766	0.32	1.4	-65.7
	9/29/16	20.21	6.84	1.655	0.18	11	-81.4
	12/15/16	11.99	6.88	1.364	3.48	10.2	77
	2/28/17	9.2	6.48	1.092	0.23	10.9	-65.8
MW-38	5/4/17	12.08	7.13	1.588	0.99	2.6	-6.2
IVI VV-30	6/19/18	15.28	6.91	1.642	0.44	5.17	-29.9
	10/1/18	19.28	7.34	1.857	0.34	26.4	-26.3
	4/8/19	9.11	6.7	1.176	1.7	3.01	21.8
	9/9/19	19.19	6.91	1.117	0.31	2.1	-42.7
	9/29/16	18.04	6.74	2.774	0.15	6.8	-76.5
	12/15/16	NS 12.00	NS 6.76	NS 2.035	NS 0.55	NS 18.1	NS -46.2
	3/2/17 5/4/17	12.99 14.36	6.98	2.614	1.18	71.5	-26
MW-39	6/19/18	15.26	6.84	2.656	0.58	5.07	-18.2
	10/2/18	16.8	7.38	2.45	0.02	6.5	-37.0
	4/9/19	13.52	6.6	1.965	0.63	0.92	-17.2
	9/10/19	17.7	6.82	2.011	0.23	2.2	-43.6
	9/27/16	15.06	6.68	1.027	0.17	1.29	-18.3
	12/13/16	9.9	7.13	1.085	1.44	3.3	-43.1
	3/2/17	11.29	7.11	0.784	0.57	1.34	-38.8
MW-42	5/4/17	13.66	7.44	1.047	1.26	0.9	-6.9
	6/19/18	14.25	7.16	1.111	0.31	4.49	37.2
	10/1/18	14.56	7.98	0.932	0.9	6.2	29.8
	4/9/19	13.11	7.03	0.883	2.59	1.36	-10.4
	9/10/19	16.05	7.19	0.851	0.39	1.0	-45.2
	9/29/16	14.99	7.45	0.667	0.13 0.56	11.2	-144.9 -189.2
	12/15/16	11.56	7.65 7.8	0.639	0.36	4.82	-142.3
	2/28/17	13.21	7.61	0.478	0.79	1.43	-25.9
MW-43	5/4/17 6/19/18	17.39	7.6	0.654	0.79	2.71	-142.6
	10/1/18	15.33	8.47	0.549	0.32	4.5	-142.6
	4/8/19	14.57	7.35	0.57	0.7	1.59	-60.3
	9/9/19	17.89	7.76	0.537	0.13	1.0	-126.8
	9/28/16	13.15	7.16	0.856	3.28	39	196.3
	12/14/16	9.95	7.11	0.863	0.5	18.4	165.2
	2/28/17	12.07	7.17	0.639	0.25	39.2	16.5
MW-45	5/4/17	11.75	7.4	0.838	0.71	6.9	9.1
	6/19/18	12.64	7.21	0.831	0.17	4.01	-1.5
	10/2/18	14.22	8.07	0.651	0.02	9.1	58.0
	4/8/19	11.52	6.88 7.18	0.671	3.05 0.31	10.6	71.9 29.7
	9/9/19 9/28/16	12.78 12.77	6.97	0.736	1.02	10.6	-100
	12/15/16	NS	NS	NS NS	NS	NS NS	NS
	2/28/17	9.91	7.01	0.47	2.11	30.7	-51.1
	5/2/17	9.92	6.87	0.602	1.8	28.1	-62.8
MW-47s	6/19/18	11.57	7.12	0.679	0.31	14.7	-68.8
	10/1/18	13.85	7.92	0.608	0	0.09	-39.0
	4/8/19	9.19	6.51	0.532	1.76	4.7	-64.2
	9/9/19	14.21	7.06	0.502	0.4	5.7	-96.2
	9/29/16	15.87	6.95	2.422	0.2	9.19	-102.3
	12/15/16	13.75	6.82	2.529	0.4	1.43	-97.1
	3/1/17	12.55	6.99	1.931	0.48	15	-92.6
MW-50	5/4/17	13.54	7.23	2.496	1.18	1.03	-55.6
	6/20/18	13.75	7.04	2.53	0.5	4.62	-0.1
	10/1/18	14.77	7.71	0.1932	0.44	20.2	53.7
	4/9/19	12.59	6.89	1.99	0.99	4.62	-36.1

Groundwater Field Parameter Readings 2019 Second Semi-Annual LTM Groundwater Monitoring Collis Inc., Clinton, Iowa

Monitoring Well	Collection Date	Temperature (°C)	pH (S.U.)	Specific Conductivity (mS/cm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
	9/29/16	17.09	7.01	2.065	0.22	39.3	-105.2
	12/15/16	13.34	6.89	2.08	0.5	16.6	-99.8
	3/1/17	10.32	7.12	1.192	0.71	2.79	-29.1
MW-50S	5/4/15	11.9	7.35	1.8	0.92	5.65	-82.8
WW-303	6/20/18	13.65	7.15	1.711	0.27	2.18	-14.3
	10/2/18	15.73	7.66	1.04	0.1	14.2	-8.0
	4/9/19	10.66	6.88	1.307	1.4	4.72	-12.8
	9/9/19	17.11	7.16	1.04	0.25	1.1	-74.4
	9/29/16	11.78	7.35	0.756	0.27	15.5	-96.1
	12/14/16	9.3	7.35	0.761	0.4	1	-75.5
	2/28/17	11.51	7.29	0.5444	0.29	6.53	-85.8
MW-53	5/4/17	11.97	7.55	0.735	0.6	1.2	-40.2
14144 55	6/19/18	13.69	7.35	0.724	0.22	1.66	-18.4
	10/2/18	11.1	8.11	0.559	0.07	9	-63.0
	4/8/19	12.19	7.06	0.596	3.71	2.06	-46.7
	9/9/19	12.48	7.36	0.521	0.21	2.1	-59.2
	9/29/16	13.16	6.95	0.739	1.54	75.3	-94.4
	12/15/16	NS	NS	NS	NS	NS	NS
	2/28/17	11.12	6.97	0.513	0.31	46	-93.5
MW-56	5/2/17	11.24	6.81	0.632	1.97	85.9	-101.2
	6/19/18	13.44	7.02	0.691	0.17	2.6	-72.2
	10/2/18	13.61	7.59	0.531	0.35	1.7	-73.0
	4/8/19	9.89	6.67	0.512	10.01	16.7	-36.0
	9/9/19	13.29	6.98	0.514	0.21	3.0	-106.7

Phase Illi groundwater field parameters are included in the table. Phase Ill was conducted during Q3 and Q4 of 2016 and Q1 and Q2 of 2017
The 2018 first semi-annual (SA) long term monitoring (LTM) event was conducted in June 2018, the 2018 second SA LTM event was conducted in October 2018, and the 2019 first SA LTM event was conducted in April 2019.
Only wells included in the LTM are shown in the table *C - Degrees Celsius

mg/L - milligram per liter mS/cm - milliSiemens per centimeter

mV - millivolt NM - Not Measured

NS - not sampled NTU - Nephelometric Turbidity Unit ORP - Oxidation Reduction Potential

S.U. - pH Standard Units
OOR - Out of Range on the turbidity meter (1000+NTU)

Notes:

* PZ-47 dried up before field parameters could be collected.

TABLE 4 VAPOR INTRUSION SCREENING COLLIS, INC. CLINTON, IA

	PARAMETERS (ug/L)	cis-1,2-DCE	trans-1,2-DCE	TCE	Vinyl Chloride	1,1-DCE
	CAS#	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4
	VISL Target Groundwater Concentration (µg/L)					
	TCR:10 ⁻⁶ THQ:0.1	NA	NA	1.9**	2.45	82.1
	VISL Target Groundwater Concentration (µg/L)					
	TCR:10 ⁻⁵ THQ:1	NA	NA	19**	24.5	821
Monitoring Well	Sample Date		First Satu	rated Ground	water Unit	
Monitoring Wen	9/29/16	99	5.4	ND	84	ND
MW-38	12/15/16	88	3.2	ND	28	ND
	2/28/17	87	3.2	ND	84	ND
	5/4/17	120	7.7	ND	81	ND
	6/19/18	120	5.2	ND	82	ND
	10/1/18	130	5.6	ND	97	ND
	4/8/19	100	3.2	ND	55	ND
	9/9/19	130	3.6	ND	83	ND
	9/29/16	190	15	ND	82	1.6
MW-39	12/15/2016*	NS	NS	NS	NS	NS
INI VV-55	3/2/17	260	11	ND ND	65	1.2
	5/4/17	270	16	ND ND	93	1.9
	6/19/18	290	16	ND ND	85	1.9
	6/19/18 DUP	260	16	ND ND	74	2.1
	10/2/18	210	11	ND ND	58	1.2
	4/9/19	210	8.8	ND ND	75	1.0
		230	11	ND ND	110	1.5
	9/10/19	240	11	2	100	1.6
	9/10/2019 DUP	6.8	ND ND	ND ND	42	ND
	9/29/16		99.92.23	ND ND		
MW-50S	12/15/16	9.8 8.4	ND	ND ND	43 25	ND ND
	3/1/17	8.8	ND ND		27	
	3/1/17 DUP	15	ND	ND ND	52	ND ND
	5/4/17	1,00000	ND	200000	45	10.00
	6/20/18	8.1	ND	ND	30	ND
	10/2/18	5.8	ND	ND	The state of the s	ND
	4/9/19	7.7	ND	ND	37	ND
	9/9/19	6.1	ND	ND	43	ND
PZ-47	9/28/16	ND	ND	ND	ND	ND
PL-41	12/13/16	ND	ND	ND	ND	ND
	3/2/17	ND	ND ND	ND	ND ND	ND
	5/2/17	ND	ND	ND	ND	ND
	6/18/18	ND	ND ND	ND	ND ND	ND
	10/1/18	ND	ND ND	ND	ND ND	ND
	10/1/18 DUP	ND	ND	ND	ND ND	ND
	4/8/19	ND	ND ND	ND	ND ND	ND
	9/9/19	ND	ND	ND	ND	ND
D7 40	9/28/16	ND	ND	ND	ND	ND
PZ-48	12/13/16	ND	ND	ND	ND	ND
	3/2/17	ND	ND	ND	ND	ND
	5/2/17	ND	ND	ND	ND	ND
	6/18/18	ND	ND	ND	ND	ND
	10/1/18	ND	ND	ND	ND	ND
	4/8/19	ND	ND	ND	ND	ND
	9/9/19	ND	ND	ND	ND	ND

Notes:

Exceeds VISL (Target Cancer Risk = 1E-06, Target Hazard Quotient = 0.1) Exceeds VISL (Target Cancer Risk = 1E-05, Target Hazard Quotient = 1)

Phase III results are also included in the table. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first semi-annual LTM event was conducted June 2018. The 2018 second semi-annual LTM event was conducted October 2018. The 2019 first semi-annual LTM event was conducted April 2019 and the second semi-annual event was conducted in September 2019.

* MW-39, MW-47S and MW-56 were not sampled during Q4 2016 (Phase III) due to inclement weather.

VISL Target Groundwater Concentrations were calculated using the EPA Vapor Intrusion Screening Level Calculator for commercial exposure, updated May 2018. VISL comparisons were not included for the Third and Fourth Saturated Units.

Only compounds that were detected in one or more samples are shown in the table.

μg/L - micrograms per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene

J- analyte is present at an estimated concentration between the MDL and Reporting Limit (RL)

LTM - Long Term Monitoring MDL - Method Detection Limit

MW - Monitoring Well

NA - Not Available

ND - Non-Detect NS - Not Sampled

PZ - Piezometer

TCE- Trichloroethene

TCR - target cancer risk THQ - target hazard quotient

VISL - vapor intrusion screening level

^{**} TCE target groundwater concentrations for vapor intrusion screening were back calculated from the EPA Region 7 action levels for TCE in air. 6 ug/m3 for an eight-hour commercial/industrial work shift per EPA instructions provided in their letter comments to BB&E dated January 26, 2017.

TABLE 4 VAPOR INTRUSION SCREENING COLLIS, INC. CLINTON, IA

	PARAMETERS (ug/L)	cis-1,2-DCE	trans-1,2-DCE	TCE	Vinyl Chloride	1,1-DCE
	CAS #	156-59-2	156-60-5	79-01-6	75-01-4	75-35-4
	VISL Target Groundwater Concentration (µg/L)					
	TCR:10 ⁻⁶ THQ:0.1	NA	NA	1.9**	2.45	82.1
	VISL Target Groundwater Concentration (µg/L) TCR:10 ⁻⁵ THQ:1	NA	NA	19**	24.5	821
Monitoring Well	Sample Date		Second Sa	turated Groun	dwater Unit	
WOIIIOIIIIG WEII	9/29/16	100	3.5	24	4.6	ND
	12/15/16	120	3.6	23	2.3	ND
MW-34	12/15/2016 DUP	130	3.6	24	2.6	ND
		120	2.1	17	2.7	0.45 J
	3/1/17	120	4.0	14	15	ND
	5/4/17	100	2.4	16	2.4	ND
	6/19/18					
	10/1/18	86	3.1	16	1.5	0.67 J
	4/9/19	65	1	9.6	0.66 J	ND
	9/10/19	120	3.1	13	2.7	0.84 J
	9/28/16	84	9	5.3	4.2	ND
MW-45	12/14/16	31	ND	3.1	ND	ND
	12/14/2016 Dup	35	ND	4.3	ND	ND
	2/28/17	19	0.81 J	4.8	ND	ND
	5/4/17	67	2.5	6.2	ND	ND
	6/19/18	48	1.5	4.2	ND	ND
	10/2/18	40	1.4	4.0	ND	ND
	4/8/19	87	2.5	4.0	4.2	ND
	9/9/19	85	1.9	3.2	4.7	ND
	9/28/16	ND	ND	ND	ND	ND
MW-47S	12/15/16*	NS	NS	NS	NS	NS
	2/28/17	ND	ND	ND	ND	ND
	5/2/17	ND	ND	ND	ND	ND
	6/19/18	ND	ND	ND	ND	ND
	10/1/18	ND	ND	ND	ND	ND
	4/8/19	ND	ND	ND ND	ND	ND
	9/9/19	ND	ND	ND	ND	ND
	9/29/16	31	ND	ND	45	ND
MW-50	12/15/16	35	ND	ND	56	ND
14144-20	3/1/17	32	ND ND	ND ND	39	ND
	5/4/17	44	ND ND	ND ND	65	ND
		28			43	ND
	6/19/18	27	ND ND	ND ND	40	ND
	10/1/18		100000		40	
	4/9/19	31	ND	ND	THE RESERVE OF THE PERSON OF T	ND
	9/9/19	35	ND	ND	57	ND
	9/29/16	ND	ND	ND	ND	ND
MW-56	12/15/2016*	NS	NS	NS	NS	NS
	2/28/17	ND	ND	ND	ND	ND
	5/2/17	ND	ND	ND	ND	ND
	6/19/18	ND	ND	ND	ND	ND
	10/2/18	ND	ND	ND	ND	ND
	4/8/19	ND	ND	ND	ND	ND
	4/8/19 DUP	ND	ND	ND	ND	ND
	9/9/19	ND	ND	ND	ND	ND

Notes:

Exceeds VISL (Target Cancer Risk = 1E-06, Target Hazard Quotient = 0.1)

Exceeds VISL (Target Cancer Risk = 1E-05, Target Hazard Quotient = 1)

Phase III results are also included in the table. Phase III was conducted September and December 2016, February/March and May 2017. The 2018 first semi-annual LTM event was conducted June 2018. The 2018 second semi-annual LTM event was conducted October 2018. The 2019 first semi-annual LTM event was conducted April 2019 and the second semi-annual event was conducted in September 2019.

* MW-39, MW-47S and MW-56 were not sampled during Q4 2016 (Phase III) due to inclement weather.

** TCE target groundwater concentrations for vapor intrusion screening were back calculated from the EPA Region 7 action levels for TCE in air: 6 ug/m3 for an eight-hour commercial/industrial work shift per EPA instructions provided in their letter comments to BB&E dated January 26, 2017.

VISL Target Groundwater Concentrations were calculated using the EPA Vapor Intrusion Screening Level Calculator for commercial exposure, updated May 2018. VISL comparisons were not included for the Third and Fourth Saturated Units.

Only compounds that were detected in one or more samples are shown in the table.

µg/L - micrograms per liter

CAS - unique numerical identifier assigned by Chemical Abstracts Service (CAS)

DCE - Dichloroethene

J- analyte is present at an estimated concentration between the MDL and Reporting Limit (RL)

LTM - Long Term Monitoring

MDL - Method Detection Limit

MW - Monitoring Well

NA - Not Available

ND - Non-Detect NS - Not Sampled

PZ - Piezometer

TCE- Trichloroethene

TCR - target cancer risk

THQ - target hazard quotient

VISL - vapor intrusion screening level

TABLE 5 LTM GROUNDWATER MNA RESULTS COLLIS, Inc. CLINTON, IA

				MV	V-34				
		Phase III Qu	uarterly LTM			Semi-annual LTM			
Favorable Conditions*	Q3 2016	Q4 2016	Q1 2017	Q2 2017	SA 1 2018	SA 2 2018	SA 1 2019	SA 2 2019	
DO (<0.5 mg/L)	0.12	2.55	0.64	0.79	0.46	0.9	1.59	0.32	
ORP (<50 mV good; <-100 mV better)	-46.8	228.6	-33.2	-11.9	0.7	-21.7	51.6	-65.7	
pH (5-9 S.U.)	7	7.08	7.04	7.49	7.17	7.48	6.9	7.11	
Sulfate (<20,000 ug/L)	77,000	68,000	74,000	100,000	71,000	68,000	65,000	55,000	
Iron (>1,000 ug/L)	51 J	18	5.9 J	55 J	33 J	19 J	ND	ND	
Nitrate/Nitrite (<1,000 ug/L)	ND	ND	33	ND	ND	ND	820	ND	
Daughter Product: cis-1,2 DCE (ug/L)	100	130	120	120	100	86	65	120	
Daughter Product: trans-1,2 DCE (ug/L)	3.5	3.6	2.1	4	2.4	3.1	1	3.1	
Daughter Product: 1,1 DCE (ug/L)	ND	ND	0.45 J	ND	ND	0.67 J	ND	0.84 J	
Daughter Product: vinyl chloride (ug/L)	4.6	2.6	2.7	15	2.4	1.5	0.66 J	2.7	
Dissolved Gases: ethene (ug/L)	ND	ND	ND	ND	ND	2.6 J	ND	ND	
Dissolved Gases: ethane (ug/L)	20	11	12	20	16	17	ND	12	
Dissolved Gases: methane (>500 ug/L)	380	220	180	320	230	190	44	170	

Notes:

MNA groundwater results shown are from Phase III LTM conducted quarterly 2016-2017; the 2018 first semi-annual LTM conducted June 2018; the 2018 second semi-annual LTM conducted October 2018; the 2019 first semi-annual LTM conducted April 2019 and the 2019 second semi-annual LTM conducted September 2019.

1,1 DCE = 1,1 dichloroethylene

cis-1,2 DCE = cis-1,2-dichloroethylene

DO = Dissolved Oxygen

J = analyte is present at an estimated concentration between the Method Detection Limit and Reporting Limit

LTM = Long Term Monitoring

MNA = Monitored Natural Attenuation

mg/L = milligrams per liter

mV = millivolt

ND = non-detect

NS = not sampled

SA = Semi-annual

S.U.= standard units

trans-1,2 DCE = trans-1,2-dichloroethylene

ug/L = micrograms per liter

Red = does not meet favorable conditions

Green = meets favorable conditions

^{*}Reference: Wiedemeier, et al., 1998, Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater.

TABLE 5 LTM GROUNDWATER MNA RESULTS COLLIS, Inc. CLINTON, IA

		MW-42										
		Phase III Quarterly LTM				Semi-annual LTM						
Favorable Conditions*	Q3 2016	Q4 2016	Q1 2017	Q2 2017	SA 1 2018	SA 2 2018	SA 1 2019	SA 2 2019				
DO (<0.5 mg/L)	0.17	1.44	0.57	1.26	0.31	0.9	2.59	0.39				
ORP (<50 mV good; <-100 mV better)	-18.3	-43.1	-38.8	-6.9	37.2	29.8	-10.4	-45.2				
pH (5-9 S.U.)	6.68	7.13	7.11	7.44	7.16	7.98	7.03	7.19				
Sulfate (<20,000 ug/L)	110,000	110,000	100,000	98,000	100,000	110,000	110,000	99,000				
Iron (>1,000 ug/L)	300	160	240	130	120	55 J	100	170				
Nitrate/Nitrite (<1,000 ug/L)	ND	ND	ND	ND	ND	ND	ND	ND				
Daughter Product: cis-1,2 DCE (ug/L)	360	350	360	340	250	320	280	260				
Daughter Product: trans-1,2 DCE (ug/L)	9.5	8.8	8.2	11	9.2	11	16	9.8				
Daughter Product: 1,1 DCE (ug/L)	3.5	3.5	3	3.4	2.9	3.6	2.6	3.6				
Daughter Product: vinyl chloride (ug/L)	32	32	27	31	37	28	49	39				
Dissolved Gases: ethene (ug/L)	ND	ND	ND	0.72 J	5.1 J	1.9 J	ND	ND				
Dissolved Gases: ethane (ug/L)	6.8	7.7	6.8	4.1	12	9.7	ND	10				
Dissolved Gases: methane (>500 ug/L)	250	270	270	180	260	190	310	240				

Notes:

MNA groundwater results shown are from Phase III LTM conducted quarterly 2016-2017; the 2018 first semi-annual

LTM conducted June 2018; the 2018 second semi-annual LTM conducted October 2018; the 2019 first semi-annual

LTM conducted April 2019 and the 2019 second semi-annual LTM conducted September 2019.

1,1 DCE = 1,1 dichloroethylene

cis-1,2 DCE = cis-1,2-dichloroethylene

DO = Dissolved Oxygen

J = analyte is present at an estimated concentration between the Method Detection Limit and Reporting Limit

LTM = Long Term Monitoring

MNA = Monitored Natural Attenuation

mg/L = milligrams per liter

mV = millivolt

ND = non-detect

NS = not sampled

SA = Semi-annual

S.U.= standard units

trans-1,2 DCE = trans-1,2-dichloroethylene

ug/L = micrograms per liter

Red = does not meet favorable conditions

Green = meets favorable conditions

^{*}Reference: Wiedemeier, et al., 1998, Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater.

TABLE 5 LTM GROUNDWATER MNA RESULTS COLLIS, Inc. CLINTON, IA

		MW-53										
		Phase III Quarterly LTM					Semi-annual LTM					
Favorable Conditions*	Q3 2016	Q4 2016	Q1 2017	Q2 2017	SA 1 2018	SA 2 2018	SA 1 2019	SA 2 2019				
DO (<0.5 mg/L)	0.27	0.4	0.29	0.6	0.22	0.07	3.71	0.21				
ORP (<50 mV good; <-100 mV better)	-96.1	-75.5	-85.8	-40.2	-18.4	-73	-46.1	-59.2				
pH (5-9 S.U.)	7.35	7.35	7.29	7.55	7.35	8.11	7.06	7.36				
Sulfate (<20,000 ug/L)	41,000	42,000	41,000	40,000	37,000	35,000	35,000	35,000				
Iron (>1,000 ug/L)	490	430	1,400	620	320	96	180	510				
Nitrate/Nitrite (<1,000 ug/L)	ND	ND	ND	ND	ND	ND	ND	ND				
Daughter Product: cis-1,2 DCE (ug/L)	17	6.7	7	7.6	9.5	12	12	11				
Daughter Product: trans-1,2 DCE (ug/L)	ND	ND	0.36 J	ND	ND	0.67 J	0.59 J	0.59 J				
Daughter Product: 1,1 DCE (ug/L)	ND	ND	ND	ND	ND	ND	ND	ND				
Daughter Product: vinyl chloride (ug/L)	ND	ND	0.7 J	ND	0.85 J	1.2	1.2	ND				
Dissolved Gases: ethene (ug/L)	ND	ND	ND	ND	ND	0.71 J	ND	ND				
Dissolved Gases: ethane (ug/L)	ND	ND	ND	ND	ND	1.7 J	ND	ND				
Dissolved Gases: methane (>500 ug/L)	31	10	18	11	13	19	21	14				

Notes:

MNA groundwater results shown are from Phase III LTM conducted quarterly 2016-2017; the 2018 first semi-annual

LTM conducted June 2018; the 2018 second semi-annual LTM conducted October 2018; the 2019 first semi-annual

LTM conducted April 2019 and the 2019 second semi-annual LTM conducted September 2019.

1,1 DCE = 1,1 dichloroethylene

cis-1,2 DCE = cis-1,2-dichloroethylene

DO = Dissolved Oxygen

J = analyte is present at an estimated concentration between the Method Detection Limit and Reporting Limit

LTM = Long Term Monitoring

MNA = Monitored Natural Attenuation

mg/L = milligrams per liter

mV = millivolt

ND = non-detect

NS = not sampled

SA = Semi-annual

S.U.= standard units

trans-1,2 DCE = trans-1,2-dichloroethylene

ug/L = micrograms per liter

Red = does not meet favorable conditions

Green = meets favorable conditions

^{*}Reference: Wiedemeier, et al., 1998, Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater.

Graph 1MW-34 Groundwater Concentration Trends

Graph 2MW-42 Groundwater Concentration Trends

Graph 3 MW-53 Groundwater Concentration Trends 40 35 30 Concentration (ug/L) 15 10 Sample Date ----cis-1,2-DCE (MW-53) ----trans-1,2-DCE (MW-53) ----- Vinyl Chloride (MW-53)

ATTACHMENT A LABORATORY ANALYTICAL DATA

25-Sep-2019

Kacie Van Buskirk BB&E, Inc. 235 East Main Street Suite 107 Northville, MI 48167

Re: SSW Collis 2019 LTM Task 3

Work Order: 19090657

Dear Kacie,

ALS Environmental received 16 samples on 11-Sep-2019 09:30 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 90.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Electronically approved by: Chad Whelton

Chad Whelton Project Manager

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP. Part of the ALS Laboratory Group. A Campbell Brothers Limited Company

Date: 25-Sep-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Work Order:

19090657

Work Order Sample Summary

Lab Samp ID Client Sample ID	Matrix Tag Number	Collection Date	Date Received Hold
19090657-01 COL-GW-01	Groundwater	9/9/2019 09:50	9/11/2019 09:30
19090657-02 COL-GW-02	Groundwater	9/9/2019 10:20	9/11/2019 09:30
19090657-03 COL-GW-03	Groundwater	9/9/2019 10:50	9/11/2019 09:30
19090657-04 COL-GW-04	Groundwater	9/9/2019 11:50	9/11/2019 09:30
19090657-05 COL-GW-05	Groundwater	9/9/2019 12:30	9/11/2019 09:30
19090657-06 COL-GW-06	Groundwater	9/9/2019 12:30	9/11/2019 09:30
19090657-07 COL-GW-07	Groundwater	9/9/2019 13:50	9/11/2019 09:30
19090657-08 COL-GW-08	Groundwater	9/9/2019 14:30	9/11/2019 09:30
19090657-09 COL-GW-09	Groundwater	9/9/2019 14:55	9/11/2019 09:30
19090657-10 COL-GW-10	Groundwater	9/9/2019 16:00	9/11/2019 09:30
19090657-11 COL-GW-11	Groundwater	9/9/2019 16:30	9/11/2019 09:30
19090657-12 COL-GW-12	Groundwater	9/10/2019 08:15	9/11/2019 09:30
19090657-13 COL-GW-13	Groundwater	9/10/2019 09:00	9/11/2019 09:30
19090657-14 COL-GW-14	Groundwater	9/10/2019 09:45	9/11/2019 09:30
19090657-15 COL-GW-15	Groundwater	9/10/2019 09:45	9/11/2019 09:30
19090657-16 Trip Blank	Water	9/9/2019	9/11/2019 09:30

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Work Order:

19090657

Case Narrative

Date: 25-Sep-19

Samples for the above noted Work Order were received on 09/11/2019. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting. A copy of the laboratory's scope of accreditation is available upon request.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics:

Batch R270981A, Method VOC_8260_W, Sample 19090657-12A: Verification of sample preservation indicated a pH >2 despite collection in HCl preserved containers.

Batch R270981A, Method VOC_8260_W, Sample 19090657-12A MS/MSD: The MS/MSD recovery was above the upper control limit for Dichlorodifluoromethane. The corresponding result in the parent sample was non-detect, therefore no qualification is required.

Batch R271001B, Method VOC_8260_W, Sample 19090657-14A MS/MSD: The MS/MSD recovery was above the upper control limit for Dichlorodifluoromethane. The corresponding result in the parent sample was non-detect, therefore no qualification is required.

Batch R271001B, Method VOC_8260_W, Sample 19090657-14A MSD: The MSD recoveries were outside of the lower limits for multiple compounds per the QC report. However, the MS recoveries and the RPDs between the MS and MSD were within control limits. No qualification is required.

Batch R271003, Method VOC_8260_W, Sample VLCSW2-190919: The LCS recovery was above the upper control limit for Dichlorodifluoromethane. The sample results for this batch may be biased high for this analyte.

Batch R271003, Method VOC_8260_W, Sample 19090657-05A MS: The MS recovery was above the upper control limit for Dichlorodifluoromethane. The corresponding result in the

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Work Order:

19090657

Case Narrative

parent sample was non-detect, therefore no qualification is required.

Batch R271003, Method VOC_8260_W, Sample 19090657-05A MSD: The RPD between the MS and MSD was outside the control limit for Iodomethane. The corresponding result in the parent sample should be considered estimated for this analyte.

Extractable Organics:

Batch R271192, Method GASES_RSK175_W, Sample 19090657-05E MSD: The MSD recovery was outside of the control limit for Methane. However, the MS recovery and the RPD between the MS and MSD was in control. No qualification is required.

Metals:

No other deviations or anomalies were noted.

Wet Chemistry:

No other deviations or anomalies were noted.

Client: B

mg/L

Milligrams per Liter

BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

WorkOrder: 19090657

QUALIFIERS, ACRONYMS, UNITS

Date: 25-Sep-19

Qualifier	Description
*	Value exceeds Regulatory Limit
**	Estimated Value
a	Analyte is non-accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
Hr	BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated.
J	Analyte is present at an estimated concentration between the MDL and Report Limit
ND	Not Detected at the Reporting Limit
O	Sample amount is > 4 times amount spiked
P R	Dual Column results percent difference > 40%
S	RPD above laboratory control limit Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
X	Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.
Acronym	<u>Description</u>
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
Α	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
Inits Reporte	d Description
μg/L	Micrograms per Liter

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-01

Collection Date: 9/9/2019 09:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-01

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	od: SW8260 0	3			Analyst: MF
1,1,1,2-Tetrachloroethane	Ü		0.38	1.0	μg/L	1	9/20/2019 06:36
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 06:36
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 06:36
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 06:36
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	µg/L	1	9/20/2019 06:36
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 06:36
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 06:36
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 06:36
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 06:36
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 06:36
1,2,4-Trichlorobenzene	U		0.45	1.0	µg/L	1	9/20/2019 06:36
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 06:36
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 06:36
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 06:36
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 06:36
1,2-Dichloroethane	Ü		0.44	1.0	μg/L	1	9/20/2019 06:36
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 06:36
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 06:36
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 06:36
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 06:36
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 06:36
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 06:36
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 06:36
2-Butanone	1.4	J	0.52	5.0	μg/L	1	9/20/2019 06:36
2-Chloroethyl vinyl ether	U		0.82	1.0	µg/L	1	9/20/2019 06:36
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 06:36
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 06:36
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 06:36
4-Chlorotoluene	U		0.31	1.0	μg/L	1	
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 06:36 9/20/2019 06:36
4-Methyl-2-pentanone	Ü		0.52	1.0	μg/L	1	9/20/2019 06:36
Acetone	7.4	J	1.1	10	μg/L	1	
Acrolein	U	•	0.38	1.0	μg/L μg/L	1	9/20/2019 06:36
Acrylonitrile	U		0.50	1.0	μg/L μg/L	1	9/20/2019 06:36
Benzene	U		0.46	1.0	μg/L μg/L	1	9/20/2019 06:36
Benzyl chloride	U		0.40	1.0	μg/L μg/L	1	9/20/2019 06:36
Bromobenzene	U		0.34	1.0			9/20/2019 06:36
Bromochloromethane	U		0.36		μg/L	1	9/20/2019 06:36
	U		0.45	1.0	µg/L	1	9/20/2019 06:36

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-01

Collection Date: 9/9/2019 09:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-01

Matrix: GROUNDWATER

Analyses	Result (Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U		0.49	1.0	μg/L	1	9/20/2019 06:36
Bromoform	U		0.56	1.0	μg/L	1	9/20/2019 06:36
Bromomethane	U		0.90	1.0	μg/L	1	9/20/2019 06:36
Carbon disulfide	U		0.49	1.0	μg/L	1	9/20/2019 06:36
Carbon tetrachloride	U		0.40	1.0	μg/L	1	9/20/2019 06:36
Chlorobenzene	U		0.40	1.0	μg/L	1	9/20/2019 06:36
Chloroethane	U		0.68	1.0	μg/L	1	9/20/2019 06:36
Chloroform	U		0.46	1.0	μg/L	1	9/20/2019 06:36
Chloromethane	1.2		0.83	1.0	μg/L	1	9/20/2019 06:36
cis-1,2-Dichloroethene	U		0.42	1.0	μg/L	1	9/20/2019 06:36
cis-1,3-Dichloropropene	U		0.57	1.0	μg/L	1	9/20/2019 06:36
Dibromochloromethane	U		0.40	1.0	μg/L	1	9/20/2019 06:36
Dibromomethane	U		0.65	1.0	μg/L	1	9/20/2019 06:36
Dichlorodifluoromethane	U		0.68	1.0	μg/L	1	9/20/2019 06:36
Ethylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 06:36
Hexachlorobutadiene	U		0.56	1.0	μg/L	1	9/20/2019 06:36
Hexachloroethane	U		0.45	1.0	μg/L	1	9/20/2019 06:36
Hexane	U		0.40	1.0	μg/L	1	9/20/2019 06:36
lodomethane	U		2.0	5.0	μg/L	1	9/20/2019 06:36
Isopropylbenzene	U		0.35	1.0	μg/L	1	9/20/2019 06:36
m,p-Xylene	U		0.81	2.0	μg/L	1	9/20/2019 06:36
Methyl tert-butyl ether	U		0.45	1.0	μg/L	1	9/20/2019 06:36
Methylene chloride	U		0.86	5.0	μg/L	1	9/20/2019 06:36
Naphthalene	U		0.77	5.0	μg/L	1	9/20/2019 06:36
n-Butylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 06:36
n-Propylbenzene	U		0.48	1.0	μg/L	1	9/20/2019 06:36
o-Xylene	U		0.31	1.0	μg/L	1	9/20/2019 06:36
p-Isopropyltoluene	U		0.26	1.0	μg/L	1	9/20/2019 06:36
sec-Butylbenzene	U		0.30	1.0	μg/L	1	9/20/2019 06:36
Styrene	U		0.33	1.0	μg/L	1	9/20/2019 06:36
tert-Butyl alcohol	6.6	J	2.4	20	μg/L	1	9/20/2019 06:36
tert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 06:36
Tetrachloroethene	U		0.39	1.0	μg/L	1	9/20/2019 06:36
Tetrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 06:36
Toluene	U		0.45	1.0	μg/L	1	9/20/2019 06:36
trans-1,2-Dichloroethene	U		0.48	1.0	μg/L	1	9/20/2019 06:36
trans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 06:36
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	9/20/2019 06:36
Trichloroethene	U		0.43	1.0	μg/L	1	9/20/2019 06:36
Trichlorofluoromethane	U		0.52	1.0	μg/L	1	9/20/2019 06:36

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-01

Collection Date: 9/9/2019 09:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-01

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 06:36
Vinyl chloride	U	0.53	1.0	μg/L	1	9/20/2019 06:36
Surr: 1,2-Dichloroethane-d4	98.4		75-120	%REC	1	9/20/2019 06:36
Surr: 4-Bromofluorobenzene	97.4		80-110	%REC	1	9/20/2019 06:36
Surr: Dibromofluoromethane	96.6		85-115	%REC	1	9/20/2019 06:36
Surr: Toluene-d8	99.8		85-110	%REC	1	9/20/2019 06:36

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-02

Collection Date: 9/9/2019 10:20 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-02

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meti	nod: SW8260C				Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 06:59
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 06:59
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 06:59
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 06:59
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 06:59
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 06:59
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 06:59
1,1-Dichloropropene	U		0.37	1.0	µg/L	1	9/20/2019 06:59
1,2,3-Trichlorobenzene	U		0.42	1.0	µg/L	1	9/20/2019 06:59
1,2,3-Trichloropropane	U		0.40	1.0	µg/L	1	9/20/2019 06:59
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 06:59
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 06:59
1,2-Dibromo-3-chloropropane	U		0.43	1.0	µg/L	1	9/20/2019 06:59
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 06:59
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 06:59
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 06:59
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 06:59
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 06:59
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 06:59
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 06:59
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 06:59
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 06:59
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 06:59
2-Butanone	2.3	J	0.52	5.0	μg/L	1	9/20/2019 06:59
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 06:59
2-Chlorotoluene	U		0.36	1.0	µg/L	1	9/20/2019 06:59
2-Hexanone	U		0.59	5.0	µg/L	1	9/20/2019 06:59
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 06:59
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 06:59
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 06:59
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 06:59
Acetone	9.4	J	1.1	10	μg/L	1	9/20/2019 06:59
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 06:59
Acrylonitrile	U		0.50	1.0	μg/L	1	9/20/2019 06:59
Benzene	U		0.46	1.0	μg/L	1	9/20/2019 06:59
Benzyl chloride	U		0.34	1.0	μg/L	1	9/20/2019 06:59
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 06:59
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 06:59

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-02

Collection Date: 9/9/2019 10:20 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-02

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U		0.49	1.0	μg/L	1	9/20/2019 06:59
Bromoform	U		0.56	1.0	μg/L	1	9/20/2019 06:59
Bromomethane	U		0.90	1.0	μg/L	1	9/20/2019 06:59
Carbon disulfide	U		0.49	1.0	μg/L	1	9/20/2019 06:59
Carbon tetrachloride	U		0.40	1.0	μg/L	1	9/20/2019 06:59
Chlorobenzene	U		0.40	1.0	μg/L	1	9/20/2019 06:59
Chloroethane	U		0.68	1.0	µg/L	1	9/20/2019 06:59
Chloroform	U		0.46	1.0	μg/L	1	9/20/2019 06:59
Chloromethane	0.91	J	0.83	1.0	μg/L	1	9/20/2019 06:59
cis-1,2-Dichloroethene	U		0.42	1.0	μg/L	1	9/20/2019 06:59
cis-1,3-Dichloropropene	U		0.57	1.0	μg/L	1	9/20/2019 06:59
Dibromochloromethane	U		0.40	1.0	μg/L	1	9/20/2019 06:59
Dibromomethane	U		0.65	1.0	μg/L	1	9/20/2019 06:59
Dichlorodifluoromethane	U		0.68	1.0	μg/L	1	9/20/2019 06:59
Ethylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 06:59
Hexachlorobutadiene	U		0.56	1.0	μg/L	1	9/20/2019 06:59
Hexachloroethane	U		0.45	1.0	μg/L	1	9/20/2019 06:59
Hexane	U		0.40	1.0	μg/L	1	9/20/2019 06:59
lodomethane	U		2.0	5.0	μg/L	1	9/20/2019 06:59
Isopropylbenzene	U		0.35	1.0	μg/L	1	9/20/2019 06:59
m,p-Xylene	U		0.81	2.0	μg/L	1	9/20/2019 06:59
Methyl tert-butyl ether	U		0.45	1.0	μg/L	1	9/20/2019 06:59
Methylene chloride	U		0.86	5.0	μg/L	1	9/20/2019 06:59
Naphthalene	U		0.77	5.0	μg/L	1	9/20/2019 06:59
n-Butylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 06:59
n-Propylbenzene	U		0.48	1.0	μg/L	1	9/20/2019 06:59
o-Xylene	U		0.31	1.0	µg/L	1	9/20/2019 06:59
p-Isopropyltoluene	U		0.26	1.0	µg/L	1	9/20/2019 06:59
sec-Butylbenzene	U		0.30	1.0	μg/L	1	9/20/2019 06:59
Styrene	U		0.33	1.0	µg/L	1	9/20/2019 06:59
tert-Butyl alcohol	4.0	J	2.4	20	μg/L	1	9/20/2019 06:59
tert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 06:59
Tetrachloroethene	U		0.39	1.0	µg/L	1	9/20/2019 06:59
Tetrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 06:59
Toluene	U		0.45	1.0	μg/L	1	9/20/2019 06:59
rans-1,2-Dichloroethene	U		0.48	1.0	μg/L	1	9/20/2019 06:59
trans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 06:59
trans-1,4-Dichloro-2-butene	Ü		0.58	2.0	μg/L	1	9/20/2019 06:59
Trichloroethene	Ü		0.43	1.0	μg/L μg/L	1	9/20/2019 06:59
Trichlorofluoromethane	U		0.52	1.0	μg/L μg/L	1	9/20/2019 06:59

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-02

Collection Date: 9/9/2019 10:20 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-02

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 06:59
Vinyl chloride	U	0.53	1.0	μg/L	1	9/20/2019 06:59
Surr: 1,2-Dichloroethane-d4	99.8		75-120	%REC	1	9/20/2019 06:59
Surr: 4-Bromofluorobenzene	94.6		80-110	%REC	1	9/20/2019 06:59
Surr: Dibromofluoromethane	92.2		85-115	%REC	1	9/20/2019 06:59
Surr: Toluene-d8	97.2		85-110	%REC	1	9/20/2019 06:59

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-03

Collection Date: 9/9/2019 10:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-03

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	od: SW8260C				Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 07:21
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 07:21
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 07:21
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 07:21
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 07:21
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 07:21
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 07:21
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 07:21
1,2,3-Trichlorobenzene	U		0.42	1.0	µg/L	1	9/20/2019 07:21
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 07:21
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 07:21
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 07:21
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 07:21
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 07:21
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 07:21
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 07:21
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 07:21
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 07:21
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 07:21
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 07:21
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 07:21
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 07:21
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 07:21
2-Butanone	1.1	J	0.52	5.0	μg/L	1	9/20/2019 07:21
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 07:21
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 07:21
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 07:21
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 07:21
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 07:21
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 07:21
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 07:21
Acetone	6.2	J	1.1	10	μg/L	1	9/20/2019 07:21
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 07:21
Acrylonitrile	U		0.50	1.0	μg/L	1	9/20/2019 07:21
Benzene	U		0.46	1.0	μg/L	1	9/20/2019 07:21
Benzyl chloride	U		0.34	1.0	μg/L	i	9/20/2019 07:21
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 07:21
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 07:21

Note:

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

Sample ID: COL-GW-03

Collection Date: 9/9/2019 10:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-03

Matrix: GROUNDWATER

Chlorobenzene Chlorobenzene U 0,688 1,0 µg/L 1 9/20/2019 07:21 Chlorofthane U 0,688 1,0 µg/L 1 9/20/2019 07:21 Chloromethane U 0,483 1,0 µg/L 1 9/20/2019 07:21 Chloromethane U 0,833 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthene U 0,57 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthene U 0,57 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthene U 0,55 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthane U 0,55 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthane U 0,685 1,0 µg/L 1 9/20/2019 07:21 Cibromothane U 0,685 1,0 µg/L 1 9/20/2019 07:21 Cibromothane U 0,686 1,0 µg/L 1 9/20/2019 07:21 Cibromothane U 0,686 1,0 µg/L 1 9/20/2019 07:21 Cibromothane U 0,566 0,0 µg/L 1 9/20/2019 07:21 Cibromothane U	Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromofom U 0.56 1.0 μg/L 1 9/20/2019 07:21 Carbon disulfide 0.53 J 0.49 1.0 μg/L 1 9/20/2019 07:21 Carbon disulfide 0.53 J 0.49 1.0 μg/L 1 9/20/2019 07:21 Carbon tetrachloride U 0.40 1.0 μg/L 1 9/20/2019 07:21 Chlorochane U 0.46 1.0 μg/L 1 9/20/2019 07:21 Chlorochane U 0.68 1.0 μg/L 1 9/20/2019 07:21 Chlorochane U 0.46 1.0 μg/L 1 9/20/2019 07:21 Chloromethane U 0.42 1.0 μg/L 1 9/20/2019 07:21 Dibromochinoromethane U 0.57 1.0 μg/L 1 9/20/2019 07:21 Dibromomethane U 0.68 1.0 μg/L 1 9/20/2019 07:21 Elbyboromochinoromethane U 0.68 1.0 μg/	Bromodichloromethane	U		0.49	1.0	μg/L	1	9/20/2019 07:21
Brommethane	Bromoform	U		0.56	1.0	0 VI-0	1	
Carbon disulfide 0.53 J 0.49 1.0 µg/L 1 9/20/2019 07:21 Carbon tetrachloride U 0.40 1.0 µg/L 1 9/20/2019 07:21 Chlorobenzene U 0.40 1.0 µg/L 1 9/20/2019 07:21 Chloromethane U 0.68 1.0 µg/L 1 9/20/2019 07:21 Chloromethane U 0.48 1.0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropropene U 0.42 1.0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropropene U 0.40 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.65 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.68 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.45 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.45 1.0 µg/L <td>Bromomethane</td> <td>U</td> <td></td> <td>0.90</td> <td>1.0</td> <td></td> <td>1</td> <td></td>	Bromomethane	U		0.90	1.0		1	
Carbon tetrachloride U 0.40 1.0 µg/L 1 9/20/2019 07:21 Chlorobenzene U 0.40 1.0 µg/L 1 9/20/2019 07:21 Chlorodenane U 0.68 1.0 µg/L 1 9/20/2019 07:21 Chlorodrom U 0.46 1.0 µg/L 1 9/20/2019 07:21 Chloromethane U 0.42 1.0 µg/L 1 9/20/2019 07:21 Cisi-1,3-Dichloropropene U 0.42 1.0 µg/L 1 9/20/2019 07:21 Dibromomethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Dibromomethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Ethyloenzene U 0.68 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.56 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.45 1.0 µg/L 1 9/20/201	Carbon disulfide	0.53	J	0.49	1.0		1	
Chlorobenzene Chlorobenzene U 0,688 1,0 µg/L 1 9/20/2019 07:21 Chlorofthane U 0,688 1,0 µg/L 1 9/20/2019 07:21 Chloromethane U 0,483 1,0 µg/L 1 9/20/2019 07:21 Chloromethane U 0,833 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthene U 0,57 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthene U 0,57 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthene U 0,55 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthane U 0,55 1,0 µg/L 1 9/20/2019 07:21 Cis-1,3-Dichloropthane U 0,685 1,0 µg/L 1 9/20/2019 07:21 Cibromothane U 0,685 1,0 µg/L 1 9/20/2019 07:21 Cibromothane U 0,686 1,0 µg/L 1 9/20/2019 07:21 Cibromothane U 0,686 1,0 µg/L 1 9/20/2019 07:21 Cibromothane U 0,566 0,0 µg/L 1 9/20/2019 07:21 Cibromothane U	Carbon tetrachloride	U		0.40	1.0		1	9/20/2019 07:21
Chloroform U 0.46 1.0 µg/L 1 92/2/2019 07:21 Chloromethane U 0.83 1.0 µg/L 1 9/2/2019 07:21 cis-1,3-Dichloropepene U 0.57 1.0 µg/L 1 9/2/2019 07:21 cis-1,3-Dichloropepene U 0.57 1.0 µg/L 1 9/2/2019 07:21 cis-1,3-Dichloropepene U 0.65 1.0 µg/L 1 9/2/2019 07:21 Dibromochlane U 0.65 1.0 µg/L 1 9/2/2019 07:21 Dibromochlane U 0.65 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.68 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.56 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.56 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.45 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.35 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.35 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.45 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.45 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.45 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.48 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.34 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.34 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.33 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.39 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.30 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.38 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.39 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.39 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.39 1.0 µg/L 1 9/2/2019 07:21 Ethylbenzene U 0.38 1.0 µg/L 1 9/2/	Chlorobenzene	U		0.40	1.0	µg/L	1	9/20/2019 07:21
Chloromethane U 0.83 1.0 μg/L 1 9/20/2019 07:21 cis-1,2-Dichloroethene cis-1,3-Dichloropropene U 0.57 1.0 μg/L 1 9/20/2019 07:21 cis-1,3-Dichloropropene U 0.57 1.0 μg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.40 1.0 μg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.65 1.0 μg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.68 1.0 μg/L 1 9/20/2019 07:21 Ethylbenzene U 0.56 1.0 μg/L 1 9/20/2019 07:21 Ethylbenzene U 0.45 1.0 μg/L 1 9/20/2019 07:21 Ethylbenzene U 0.45 1.0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.45 1.0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.81 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.81 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.81 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.81 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.86 5 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.45 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.45 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.45 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.45 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.45 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.34 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.34 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.34 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.33 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.33 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.33 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.39 1 0 μg/L 1	Chloroethane	U		0.68	1.0	μg/L	1	9/20/2019 07:21
Chloromethane U 0.83 1.0 µg/L 1 9/20/2019 07:21 cis-1,2-Dichloroethene U 0.42 1.0 µg/L 1 9/20/2019 07:21 cis-1,3-Dichloropropene U 0.57 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.65 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.665 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.668 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.688 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.566 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.45 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.45 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.45 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.35 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.861 2.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.861 2.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.861 2.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.868 5.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.777 5.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.34 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.34 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.36 1.0 µg/L 1 9/20/2019 07:21 Dibropropytlouene U 0.36 1.0 µg/L 1 9/20/2019 07:21 Dibropropytlouene U 0.36 1.0 µg/L 1 9/20/2019 07:21 Dibropropytlouene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Dibropropytlouene U 0.45 1.0 µg/L 1 9/20/2019 07:21 Dibropropytlouene U 0.45 1.0 µg/L 1 9/20/2019 07:21 Dibropropytlouene U 0.46 1.0 µg/L 1 9/20/2019 07:21 Dibropropytlouene U 0.48 1.0 µg/L 1 9/20/2019 07:21 Dibropropytlouene U 0.48 1.0 µg/L 1 9/20	Chloroform	U		0.46	1.0	µg/L	1	
cis-1,2-Dichloroethene U 0.42 1.0 µg/L 1 9/20/2019 07:21 cis-1,3-Dichloropropene U 0.57 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.65 1.0 µg/L 1 9/20/2019 07:21 Dichlorodifluoromethane U 0.68 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.68 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.56 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.45 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.35 1.0 µg/L	Chloromethane	U		0.83	1.0	μg/L	1	
cis-1,3-Dichloropropene U 0.57 1.0 µg/L 1 9/20/2019 07:21 Dibromochloromethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Dibromomethane U 0.65 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.68 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.45 1.0 µg/L	cis-1,2-Dichloroethene	U		0.42	1.0		1	
Dibromochloromethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Dibromomethane U 0.65 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.68 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.56 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.45 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.35 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.86 5.0 µg/L	cis-1,3-Dichloropropene	U		0.57	1.0			
Dibromomethane U 0.65 1.0 µg/L 1 9/20/2019 07:21 Dichlorodifluoromethane U 0.68 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.56 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.45 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.35 1.0 µg/L 1 9/20/2019 07:21 Idodomethane U 0.81 2.0 µg/L 1 9/20/2019 07:21 Methyl tert-butyl ether U 0.81 2.0 µg/L 1	Dibromochloromethane	U		0.40	1.0	. •		
Dichlorodifluoromethane U 0.68 1.0 µg/L 1 9/20/2019 07:21 Ethylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.56 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.45 1.0 µg/L 1 9/20/2019 07:21 Hexane U 0.40 1.0 µg/L 1 9/20/2019 07:21 I dodmethane U 0.35 1.0 µg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.35 1.0 µg/L 1 9/20/2019 07:21 Methyl tert-butyl ether U 0.81 2.0 µg/L 1 9/20/2019 07:21 Methyl tert-butyl ether U 0.45 1.0 µg/L 1 9/20/2019 07:21 Methyl tert-butyl ether U 0.86 5.0 µg/L 1 9/20/2019 07:21 Methylene chloride U 0.86 5.0 µg/L	Dibromomethane	U		0.65	1.0			
Ethylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.56 1.0 µg/L 1 9/20/2019 07:21 Hexachlorobutadiene U 0.45 1.0 µg/L 1 9/20/2019 07:21 Hexane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Idodomethane U 2.0 5.0 µg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.35 1.0 µg/L 1 9/20/2019 07:21 Methyl tert-butyl ether U 0.81 2.0 µg/L 1 9/20/2019 07:21 Methylere chloride U 0.86 5.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.77 5.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.34 1.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.34 1.0 µg/L 1 9/20/2019 07:21	Dichlorodifluoromethane	U		0.68				
Hexachlorobutadiene U 0.56 1.0 µg/L 1 9/20/2019 07:21 Hexachloroethane U 0.45 1.0 µg/L 1 9/20/2019 07:21 Hexane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Idodomethane U 0.20 5.0 µg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.35 1.0 µg/L 1 9/20/2019 07:21 Methyl tert-butyl ether U 0.81 2.0 µg/L 1 9/20/2019 07:21 Methylene chloride U 0.86 5.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.77 5.0 µg/L 1 9/20/2019 07:21 n-Propylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 n-Propylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 n-Propylbenzene U 0.31 1.0 µg/L 1 9/20/2	Ethylbenzene	U		0.34	1.0			
Hexachloroethane U 0.45 1.0 µg/L 1 9/20/2019 07:21 Hexane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Idodmethane U 0.40 1.0 µg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.35 1.0 µg/L 1 9/20/2019 07:21 Methyl tert-butyl ether U 0.45 1.0 µg/L 1 9/20/2019 07:21 Methylene chloride U 0.86 5.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.77 5.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.77 5.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.34 1.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.37 5.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.34 1.0 µg/L 1 9/20/2019 07:21 </td <td>Hexachlorobutadiene</td> <td>U</td> <td></td> <td>0.56</td> <td>1.0</td> <td></td> <td></td> <td></td>	Hexachlorobutadiene	U		0.56	1.0			
Hexane U 0.40 1.0 μg/L 1 9/20/2019 07:21 Iodomethane U 2.0 5.0 μg/L 1 9/20/2019 07:21 Isopropylbenzene U 0.35 1.0 μg/L 1 9/20/2019 07:21 m,p-Xylene U 0.81 2.0 μg/L 1 9/20/2019 07:21 Methyl tert-butyl ether U 0.45 1.0 μg/L 1 9/20/2019 07:21 Methylene chloride U 0.86 5.0 μg/L 1 9/20/2019 07:21 Naphthalene U 0.77 5.0 μg/L 1 9/20/2019 07:21 n-Butylbenzene U 0.34 1.0 μg/L 1 9/20/2019 07:21 n-Propylbenzene U 0.48 1.0 μg/L 1 9/20/2019 07:21 p-Isopropyltoluene U 0.31 1.0 μg/L 1 9/20/2019 07:21 p-Isopropyltoluene U 0.31 1.0 μg/L 1 9/20/2019 07	Hexachloroethane	U		0.45				
Sopropylbenzene	Hexane	U		0.40				
Sopropylbenzene	lodomethane	U		2.0		· -		
m,p-Xylene	Isopropylbenzene	U						
Methyl tert-butyl ether U 0.45 1.0 μg/L 1 9/20/2019 07:21 Methylene chloride U 0.86 5.0 μg/L 1 9/20/2019 07:21 Naphthalene U 0.77 5.0 μg/L 1 9/20/2019 07:21 n-Butylbenzene U 0.34 1.0 μg/L 1 9/20/2019 07:21 n-Propylbenzene U 0.48 1.0 μg/L 1 9/20/2019 07:21 o-Xylene U 0.31 1.0 μg/L 1 9/20/2019 07:21 p-Isopropyltoluene U 0.26 1.0 μg/L 1 9/20/2019 07:21 sec-Butylbenzene U 0.30 1.0 μg/L 1 9/20/2019 07:21 set-Butylbenzene U 0.33 1.0 μg/L 1 9/20/2019 07:21 set-Butylbenzene U 0.33 1.0 μg/L 1 9/20/2019 07:21 set-Butylbenzene U 0.33 1.0 μg/L 1	m,p-Xylene	U						
Methylene chloride U 0.86 5.0 µg/L 1 9/20/2019 07:21 Naphthalene U 0.77 5.0 µg/L 1 9/20/2019 07:21 n-Butylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 n-Propylbenzene U 0.48 1.0 µg/L 1 9/20/2019 07:21 o-Xylene U 0.31 1.0 µg/L 1 9/20/2019 07:21 p-Isopropyltoluene U 0.26 1.0 µg/L 1 9/20/2019 07:21 sec-Butylbenzene U 0.30 1.0 µg/L 1 9/20/2019 07:21 Styrene U 0.33 1.0 µg/L 1 9/20/2019 07:21 tert-Butyl alcohol 3.0 J 2.4 20 µg/L 1 9/20/2019 07:21 tert-Butyl benzene U 0.39 1.0 µg/L 1 9/20/2019 07:21 tert-Butyl benzene U 0.39 1.0 µg/L 1	Methyl tert-butyl ether	U						
Naphthalene U 0.77 5.0 µg/L 1 9/20/2019 07:21 n-Butylbenzene U 0.34 1.0 µg/L 1 9/20/2019 07:21 n-Propylbenzene U 0.48 1.0 µg/L 1 9/20/2019 07:21 0-Xylene U 0.31 1.0 µg/L 1 9/20/2019 07:21 p-Isopropyltoluene U 0.26 1.0 µg/L 1 9/20/2019 07:21 sec-Butylbenzene U 0.30 1.0 µg/L 1 9/20/2019 07:21 Styrene U 0.30 1.0 µg/L 1 9/20/2019 07:21 tert-Butyl alcohol 1 9/20/2019 07:21 tert-Butyl benzene U 0.33 1.0 µg/L 1 9/20/2019 07:21 tert-Butylbenzene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrachloroethene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrachloroethene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrachloroethene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.73 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 µg/L 1 9/20/2019 07:21 trans-1,2-Dichloroethene U 0.48 1.0 µg/L 1 9/20/2019 07:21 trans-1,3-Dichloropropene U 0.38 1.0 µg/L 1 9/20/2019 07:21 trans-1,4-Dichloro-2-butene U 0.58 2.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.58 2.0 µg/L 1 9/20/2019 07:21	Methylene chloride	U						
n-Butylbenzene	Naphthalene	U		0.77			-	
n-Propylbenzene o-Xylene U 0.48 1.0 µg/L 1 9/20/2019 07:21 o-Xylene U 0.31 1.0 µg/L 1 9/20/2019 07:21 p-Isopropyltoluene U 0.26 1.0 µg/L 1 9/20/2019 07:21 sec-Butylbenzene U 0.30 1.0 µg/L 1 9/20/2019 07:21 Styrene U 0.33 1.0 µg/L 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 1 1 9/20/2019 07:21 1 1 1 9/20/2019 07:21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n-Butylbenzene	U		0.34				
σ-Xylene U 0.31 1.0 μg/L 1 9/20/2019 07:21 p-Isopropyltoluene U 0.26 1.0 μg/L 1 9/20/2019 07:21 sec-Butylbenzene U 0.30 1.0 μg/L 1 9/20/2019 07:21 Styrene U 0.33 1.0 μg/L 1 9/20/2019 07:21 tert-Butyl alcohol 3.0 J 2.4 20 μg/L 1 9/20/2019 07:21 tert-Butylbenzene U 0.39 1.0 μg/L 1 9/20/2019 07:21 Tetrachloroethene U 0.39 1.0 μg/L 1 9/20/2019 07:21 Tetrahydrofuran U 0.73 1.0 μg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 μg/L 1 9/20/2019 07:21 trans-1,2-Dichloroethene U 0.48 1.0 μg/L 1 9/20/2019 07:21 trans-1,4-Dichloro-2-butene U 0.58 2.0 μg/L <	n-Propylbenzene	U		0.48		. •		
p-Isopropyltoluene p-Isopropylto	o-Xylene	Ü		0.31				
Sec-Butylbenzene U 0.30 1.0 µg/L 1 9/20/2019 07:21 Styrene U 0.33 1.0 µg/L 1 9/20/2019 07:21 tert-Butyl alcohol 3.0 J 2.4 20 µg/L 1 9/20/2019 07:21 tert-Butylbenzene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrachloroethene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrahydrofuran U 0.73 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 µg/L 1 9/20/2019 07:21 terns-1,2-Dichloroethene U 0.48 1.0 µg/L 1 9/20/2019 07:21 terns-1,3-Dichloropropene U 0.38 1.0 µg/L 1 9/20/2019 07:21 terns-1,4-Dichloro-2-butene U 0.58 2.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21 Trichloroethene	p-Isopropyltoluene	U		0.26				
Styrene U 0.33 1.0 µg/L 1 9/20/2019 07:21 tert-Butyl alcohol 3.0 J 2.4 20 µg/L 1 9/20/2019 07:21 tert-Butylbenzene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrachloroethene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrahydrofuran U 0.39 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 µg/L 1 9/20/2019 07:21 trans-1,2-Dichloroethene U 0.48 1.0 µg/L 1 9/20/2019 07:21 trans-1,3-Dichloropropene U 0.38 1.0 µg/L 1 9/20/2019 07:21 trans-1,4-Dichloro-2-butene U 0.58 2.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21 trans-1,4-Dichloro-2-butene U 0.43 1.0 µg/L 1 9/20/2019 07:21 Trichloroethene	sec-Butylbenzene	U		0.30				
tert-Butyl alcohol 3.0 J 2.4 20 µg/L 1 9/20/2019 07:21 tert-Butylbenzene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrachloroethene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrahydrofuran U 0.73 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 µg/L 1 9/20/2019 07:21 trans-1,2-Dichloroethene U 0.48 1.0 µg/L 1 9/20/2019 07:21 trans-1,3-Dichloropropene U 0.38 1.0 µg/L 1 9/20/2019 07:21 trans-1,4-Dichloro-2-butene U 0.58 2.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21	Styrene	U		0.33		-		
dert-Butylbenzene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrachloroethene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrahydrofuran U 0.73 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 µg/L 1 9/20/2019 07:21 trans-1,2-Dichloroethene U 0.48 1.0 µg/L 1 9/20/2019 07:21 trans-1,3-Dichloropropene U 0.38 1.0 µg/L 1 9/20/2019 07:21 trans-1,4-Dichloro-2-butene U 0.58 2.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21	tert-Butyl alcohol	3.0	J			-		
Tetrachloroethene U 0.39 1.0 µg/L 1 9/20/2019 07:21 Tetrahydrofuran U 0.73 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 µg/L 1 9/20/2019 07:21 trans-1,2-Dichloroethene U 0.48 1.0 µg/L 1 9/20/2019 07:21 trans-1,3-Dichloropropene U 0.38 1.0 µg/L 1 9/20/2019 07:21 trans-1,4-Dichloro-2-butene U 0.58 2.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21	tert-Butylbenzene	U		0.39		. •		
Tetrahydrofuran U 0.73 1.0 µg/L 1 9/20/2019 07:21 Toluene U 0.45 1.0 µg/L 1 9/20/2019 07:21 trans-1,2-Dichloroethene U 0.48 1.0 µg/L 1 9/20/2019 07:21 trans-1,3-Dichloropropene U 0.38 1.0 µg/L 1 9/20/2019 07:21 trans-1,4-Dichloro-2-butene U 0.58 2.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21	Tetrachloroethene	U		0.39				
Toluene U 0.45 1.0 μg/L 1 9/20/2019 07:21 trans-1,2-Dichloroethene U 0.48 1.0 μg/L 1 9/20/2019 07:21 grans-1,3-Dichloropropene U 0.38 1.0 μg/L 1 9/20/2019 07:21 grans-1,4-Dichloro-2-butene U 0.58 2.0 μg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 μg/L 1 9/20/2019 07:21 grans-1,4-Dichloro-2-butene U 0.43 1.0 μg/L 1 9/20/2019 07:21 grans-1,4-Dichloroethene	Tetrahydrofuran	U		0.73				
trans-1,2-Dichloroethene U 0.48 1.0 μg/L 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 9/20/2019 07:21 1 1 9/20/2019 07:21 1 9/	Toluene							
drans-1,3-Dichloropropene U 0.38 1.0 μg/L 1 9/20/2019 07:21 drans-1,4-Dichloro-2-butene U 0.58 2.0 μg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 μg/L 1 9/20/2019 07:21	trans-1,2-Dichloroethene	U					•	
trans-1,4-Dichloro-2-butene U 0.58 2.0 µg/L 1 9/20/2019 07:21 Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21	trans-1,3-Dichloropropene							
Trichloroethene U 0.43 1.0 µg/L 1 9/20/2019 07:21	trans-1,4-Dichloro-2-butene							
3/20/2019 01:21	Trichloroethene							
	Trichlorofluoromethane	U		0.52	1.0	μg/L	1	9/20/2019 07:21

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-03

Collection Date: 9/9/2019 10:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-03

Matrix: GROUNDWATER

Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
U	0.83	5.0	μg/L	1	9/20/2019 07:21
U	0.53	1.0	μg/L	1	9/20/2019 07:21
102		75-120	%REC	1	9/20/2019 07:21
97.0		80-110	%REC	1	9/20/2019 07:21
94.6		85-115	%REC	1	9/20/2019 07:21
102		85-110	%REC	1	9/20/2019 07:21
	U U 102 97.0 94.6	U 0.83 U 0.53 102 97.0 94.6	Result Qual MDL Limit U 0.83 5.0 U 0.53 1.0 102 75-120 97.0 80-110 94.6 85-115	Result Qual MDL Limit Units U 0.83 5.0 μg/L U 0.53 1.0 μg/L 102 75-120 %REC 97.0 80-110 %REC 94.6 85-115 %REC	Result Qual MDL Limit Units Factor U 0.83 5.0 μg/L 1 U 0.53 1.0 μg/L 1 102 75-120 %REC 1 97.0 80-110 %REC 1 94.6 85-115 %REC 1

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-04

Collection Date: 9/9/2019 11:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-04

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
1,4-DIOXANE BY SELECT ION MONITORING	3	Meth	nod: SW8260B				Analyst: BG
1,4-Dioxane	U		0.44	0.60	μg/L	1	9/20/2019 11:40
Surr: Toluene-d8	111			74-124	%REC	1	9/20/2019 11:40
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260C				Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 07:43
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 07:43
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 07:43
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 07:43
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 07:43
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 07:43
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 07:43
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 07:43
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 07:43
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 07:43
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 07:43
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 07:43
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 07:43
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 07:43
1,2-Dichlorobenzene	U		0.32	1.0	µg/L	1	9/20/2019 07:43
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 07:43
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 07:43
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 07:43
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 07:43
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 07:43
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 07:43
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 07:43
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 07:43
2-Butanone	1.7	J	0.52	5.0	μg/L	1	9/20/2019 07:43
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 07:43
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 07:43
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 07:43
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 07:43
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 07:43
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 07:43
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 07:43
Acetone	5.9	J	1.1	10	µg/L	1	9/20/2019 07:43
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 07:43
Acrylonitrile	U		0.50	1.0	μg/L	1	9/20/2019 07:43
Benzene	U		0.46	1.0	μg/L	1	9/20/2019 07:43

Note:

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

Sample ID: COL-GW-04

Collection Date: 9/9/2019 11:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-04

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Benzyl chloride	U	0.34	1.0	μg/L	1	9/20/2019 07:43
Bromobenzene	U	0.38	1.0	μg/L	1	9/20/2019 07:43
Bromochloromethane	U	0.45	1.0	μg/L	1	9/20/2019 07:43
Bromodichloromethane	U	0.49	1.0	μg/L	1	9/20/2019 07:43
Bromoform	U	0.56	1.0	μg/L	1	9/20/2019 07:43
Bromomethane	U	0.90	1.0	μg/L	1	9/20/2019 07:43
Carbon disulfide	U	0.49	1.0	µg/L	1	9/20/2019 07:43
Carbon tetrachloride	U	0.40	1.0	μg/L	1	9/20/2019 07:43
Chlorobenzene	U	0.40	1.0	μg/L	1	9/20/2019 07:43
Chloroethane	U	0.68	1.0	μg/L	1	9/20/2019 07:43
Chloroform	U	0.46	1.0	μg/L	1	9/20/2019 07:43
Chloromethane	U	0.83	1.0	μg/L	1	9/20/2019 07:43
cis-1,2-Dichloroethene	85	0.42	1.0	μg/L	1	9/20/2019 07:43
cis-1,3-Dichloropropene	U	0.57	1.0	μg/L	1	9/20/2019 07:43
Dibromochloromethane	U	0.40	1.0	μg/L	1	9/20/2019 07:43
Dibromomethane	U	0.65	1.0	μg/L	1	9/20/2019 07:43
Dichlorodifluoromethane	U	0.68	1.0	μg/L	1	9/20/2019 07:43
Ethylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 07:43
Hexachlorobutadiene	U	0.56	1.0	μg/L	1	9/20/2019 07:43
Hexachloroethane	U	0.45	1.0	μg/L	1	9/20/2019 07:43
Hexane	Ü	0.40	1.0	μg/L	1	9/20/2019 07:43
lodomethane	U	2.0	5.0	μg/L	1	9/20/2019 07:43
Isopropylbenzene	U	0.35	1.0	μg/L	1	9/20/2019 07:43
m,p-Xylene	U	0.81	2.0	μg/L	1	9/20/2019 07:43
Methyl tert-butyl ether	U	0.45	1.0	μg/L	1	9/20/2019 07:43
Methylene chloride	U	0.86	5.0	μg/L	1	9/20/2019 07:43
Naphthalene	U	0.77	5.0	µg/L	1	9/20/2019 07:43
n-Butylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 07:43
n-Propylbenzene	U	0.48	1.0	μg/L	1	9/20/2019 07:43
o-Xylene	U	0.31	1.0	μg/L	1	
o-Isopropyltoluene	U	0.26	1.0	μg/L μg/L	1	9/20/2019 07:43
sec-Butylbenzene	U	0.30	1.0	μg/L μg/L	1	9/20/2019 07:43
Styrene	U	0.33	1.0	μg/L μg/L	1	9/20/2019 07:43
ert-Butyl alcohol	Ü	2.4	20	μg/L μg/L	1	9/20/2019 07:43
ert-Butylbenzene	U	0.39	1.0	μg/L μg/L	1	9/20/2019 07:43
Tetrachloroethene	U	0.39	1.0	μg/L μg/L	1	9/20/2019 07:43
Tetrahydrofuran	U	0.39	1.0	μg/L μg/L	1	9/20/2019 07:43
Foluene	U	0.73	1.0			9/20/2019 07:43
rans-1,2-Dichloroethene	1.9	0.45		μg/L	1	9/20/2019 07:43
rans-1,3-Dichloropropene	1.9 U			μg/L	1	9/20/2019 07:43
	U	0.38	1.0	μg/L	1	9/20/2019 07:43

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

Sample ID: COL-GW-04

Collection Date: 9/9/2019 11:50 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-04

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
trans-1,4-Dichloro-2-butene	U	0.58	2.0	μg/L	1	9/20/2019 07:43
Trichloroethene	3.2	0.43	1.0	μg/L	1	9/20/2019 07:43
Trichlorofluoromethane	U	0.52	1.0	μg/L	1	9/20/2019 07:43
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 07:43
Vinyl chloride	4.7	0.53	1.0	μg/L	1	9/20/2019 07:43
Surr: 1,2-Dichloroethane-d4	99.2		75-120	%REC	1	9/20/2019 07:43
Surr: 4-Bromofluorobenzene	96.0		80-110	%REC	1	9/20/2019 07:43
Surr: Dibromofluoromethane	95.2		85-115	%REC	1	9/20/2019 07:43
Surr: Toluene-d8	99.3		85-110	%REC	1	9/20/2019 07:43

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-05

Collection Date: 9/9/2019 12:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-05

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
GASES IN WATER		Metho	d: RSK-175				Analyst: KB
Ethane	U		1.5	5.0	μg/L	1	9/23/2019 14:39
Ethene	U		2.7	5.0	μg/L	1	9/23/2019 14:39
Methane	12		3.3	5.0	μg/L	1	9/23/2019 14:39
METALS BY ICP-MS (DISSOLVED)		Metho	d: SW6020A		Prep: FILT	TER / 9/20/19	Analyst: STP
Iron	0.27		0.050	0.080	mg/L	1	9/20/2019 16:38
Manganese	0.048		0.0025	0.0050	mg/L	1	9/20/2019 16:38
1,4-DIOXANE BY SELECT ION MONITORII	NG	Metho	d: SW8260B				Analyst: AK
1,4-Dioxane	U		0.44	0.60	μg/L	1	9/17/2019 20:23
Surr: Toluene-d8	112			74-124	%REC	1	9/17/2019 20:23
VOLATILE ORGANIC COMPOUNDS		Metho	d: SW8260C				Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 08:05
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 08:05
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 08:05
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 08:05
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 08:05
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 08:05
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 08:05
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 08:05
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 08:05
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 08:05
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 08:05
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 08:05
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 08:05
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 08:05
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 08:05
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 08:05
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 08:05
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 08:05
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 08:05
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 08:05
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 08:05
1,4-Dichlorobenzene	U		0.35	1.0	µg/L	1	9/20/2019 08:05
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 08:05
2-Butanone	0.87	J	0.52	5.0	μg/L	1	9/20/2019 08:05
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 08:05
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 08:05
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 08:05

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-05

Collection Date: 9/9/2019 12:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-05

Matrix: GROUNDWATER

analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U	0.66	5.0	μg/L	1	9/20/2019 08:05
4-Chlorotoluene	U	0.31	1.0	μg/L	1	9/20/2019 08:05
4-Isopropyltoluene	U	0.10	1.0	μg/L	1	9/20/2019 08:05
4-Methyl-2-pentanone	U	0.52	1.0	μg/L	1	9/20/2019 08:05
Acetone	11	1.1	10	μg/L	1	9/20/2019 08:05
Acrolein	U	0.38	1.0	μg/L	1	9/20/2019 08:05
Acrylonitrile	U	0.50	1.0	μg/L	1	9/20/2019 08:05
Benzene	U	0.46	1.0	μg/L	1	9/20/2019 08:05
Benzyl chloride	U	0.34	1.0	μg/L	1	9/20/2019 08:05
Bromobenzene	U	0.38	1.0	μg/L	1	9/20/2019 08:0
Bromochloromethane	U	0.45	1.0	μg/L	1	9/20/2019 08:05
Bromodichloromethane	U	0.49	1.0	μg/L	1	9/20/2019 08:0
Bromoform	U	0.56	1.0	μg/L	1	9/20/2019 08:09
Bromomethane	U	0.90	1.0	μg/L	1	9/20/2019 08:0
Carbon disulfide	U	0.49	1.0	μg/L	1	9/20/2019 08:0
Carbon tetrachloride	U	0.40	1.0	μg/L	1	9/20/2019 08:05
Chlorobenzene	U	0.40	1.0	μg/L	1	9/20/2019 08:0
Chloroethane	U	0.68	1.0	μg/L	1	9/20/2019 08:0
Chloroform	U	0.46	1.0	μg/L	1	9/20/2019 08:0
Chloromethane	U	0.83	1.0	μg/L	1	9/20/2019 08:0
cis-1,2-Dichloroethene	11	0.42	1.0	μg/L	1	9/20/2019 08:0
cis-1,3-Dichloropropene	U	0.57	1.0	μg/L	1	9/20/2019 08:0
Dibromochloromethane	U	0.40	1.0	μg/L	1	9/20/2019 08:0
Dibromomethane	U	0.65	1.0	μg/L	1	9/20/2019 08:05
Dichlorodifluoromethane	U	0.68	1.0	μg/L	1	9/20/2019 08:05
Ethylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 08:05
Hexachlorobutadiene	U	0.56	1.0	μg/L	1	9/20/2019 08:05
Hexachloroethane	U	0.45	1.0	μg/L	1	9/20/2019 08:05
Hexane	U	0.40	1.0	μg/L	1	9/20/2019 08:05
lodomethane	U	2.0	5.0	μg/L	1	9/20/2019 08:05
Isopropylbenzene	U	0.35	1.0	μg/L	1	9/20/2019 08:05
m,p-Xylene	U	0.81	2.0	μg/L	1	9/20/2019 08:05
Methyl tert-butyl ether	U	0.45	1.0	μg/L	1	9/20/2019 08:05
Methylene chloride	U	0.86	5.0	μg/L	1	9/20/2019 08:05
Naphthalene	U	0.77	5.0	μg/L	1	9/20/2019 08:05
n-Butylbenzene	U	0.34	1.0	µg/L	1	9/20/2019 08:05
n-Propylbenzene	U	0.48	1.0	µg/L	1	9/20/2019 08:05
o-Xylene	U	0.31	1.0	µg/L	1	9/20/2019 08:05
p-Isopropyltoluene	U	0.26	1.0	μg/L	1	9/20/2019 08:05
sec-Butylbenzene	U	0.30	1.0	µg/L	1	9/20/2019 08:05

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-05

Collection Date: 9/9/2019 12:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-05

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.33	1.0	μg/L	1	9/20/2019 08:05
tert-Butyl alcohol	14	J	2.4	20	μg/L	1	9/20/2019 08:05
tert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 08:05
Tetrachloroethene	U		0.39	1.0	μg/L	1	9/20/2019 08:05
Tetrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 08:05
Toluene	U		0.45	1.0	μg/L	1	9/20/2019 08:05
trans-1,2-Dichloroethene	0.56	J	0.48	1.0	μg/L	1	9/20/2019 08:05
trans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 08:05
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	9/20/2019 08:05
Trichloroethene	U		0.43	1.0	μg/L	1	9/20/2019 08:05
Trichlorofluoromethane	U		0.52	1.0	μg/L	1	9/20/2019 08:05
Vinyl acetate	U		0.83	5.0	μg/L	1	9/20/2019 08:05
Vinyl chloride	U		0.53	1.0	μg/L	1	9/20/2019 08:05
Surr: 1,2-Dichloroethane-d4	102			75-120	%REC	1	9/20/2019 08:05
Surr: 4-Bromofluorobenzene	95.0			80-110	%REC	1	9/20/2019 08:05
Surr: Dibromofluoromethane	95.8			85-115	%REC	1	9/20/2019 08:05
Surr: Toluene-d8	100			85-110	%REC	1	9/20/2019 08:05
ANIONS BY ION CHROMATOGRAPHY		Meth	nod: SW9056A				Analyst: JDR
Chloride	18		1.6	5.0	mg/L	5	9/12/2019 13:53
Sulfate	35		1.7	5.0	mg/L	5	9/12/2019 13:53
NITROGEN, NITRATE-NITRITE		Meth	nod: E353.2 R 2	2.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	U		0.012	0.020	mg/L	1	9/17/2019 11:01
SULFIDE		Meth	nod: SW9034				Analyst: DNW
Sulfide	U		0.42	1.0	mg/L	1	9/11/2019 11:00

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-06

Collection Date: 9/9/2019 12:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-06

Matrix: GROUNDWATER

Analyses	Result	Qual MD	Report L Limit	Units	Dilution Factor	Date Analyzed
GASES IN WATER		Method: RSK-	175			Analyst: KB
Ethane	U	1	.5 5.0	μg/L	1	9/23/2019 14:41
Ethene	U	2	.7 5.0	μg/L	1	9/23/2019 14:41
Methane	14	3	.3 5.0	μg/L	1	9/23/2019 14:41
METALS BY ICP-MS (DISSOLVED)		Method: SW6)20A	Prep: FIL	TER / 9/20/19	Analyst: STP
Iron	0.51	0.0	0.080	mg/L	1	9/20/2019 16:44
Manganese	0.047	0.00	0.0050	mg/L	1	9/20/2019 16:44
1,4-DIOXANE BY SELECT ION MONITO	RING	Method: SW8	260B			Analyst: AK
1,4-Dioxane	U	0.4	14 0.60	μg/L	1	9/18/2019 12:17
Surr: Toluene-d8	117		74-124	%REC	1	9/18/2019 12:17
VOLATILE ORGANIC COMPOUNDS		Method: SW82	260C			Analyst: MF
1,1,1,2-Tetrachloroethane	U	0.3	38 1.0	μg/L	1	9/20/2019 08:27
1,1,1-Trichloroethane	U	0.4	1.0	μg/L	1	9/20/2019 08:27
1,1,2,2-Tetrachloroethane	U	0.4	1.0	μg/L	1	9/20/2019 08:27
1,1,2-Trichloroethane	U	0.4	1.0	μg/L	1	9/20/2019 08:27
1,1,2-Trichlorotrifluoroethane	U	0.5	52 1.0	μg/L	1	9/20/2019 08:27
1,1-Dichloroethane	U	0.4	1.0	μg/L	1	9/20/2019 08:27
1,1-Dichloroethene	U	0.4	1.0	μg/L	1	9/20/2019 08:27
1,1-Dichloropropene	U	0.3	1.0	μg/L	1	9/20/2019 08:27
1,2,3-Trichlorobenzene	U	0.4	1.0	μg/L	1	9/20/2019 08:27
1,2,3-Trichloropropane	U	0.4	1.0	μg/L	1	9/20/2019 08:27
1,2,4-Trichlorobenzene	U	0.4	5 1.0	μg/L	1	9/20/2019 08:27
1,2,4-Trimethylbenzene	U	0.4	5 1.0	μg/L	1	9/20/2019 08:27
1,2-Dibromo-3-chloropropane	U	0.4	3 1.0	μg/L	1	9/20/2019 08:27
1,2-Dibromoethane	U	0.4	1.0	μg/L	1	9/20/2019 08:27
1,2-Dichlorobenzene	U	0.3	1.0	μg/L	1	9/20/2019 08:27
1,2-Dichloroethane	U	0.4	4 1.0	μg/L	1	9/20/2019 08:27
1,2-Dichloropropane	U	0.4	8 1.0	μg/L	1	9/20/2019 08:27
1,3,5-Trichlorobenzene	U	0.3	1.0	μg/L	1	9/20/2019 08:27
1,3,5-Trimethylbenzene	U	0.6	5 1.0	µg/L	1	9/20/2019 08:27
1,3-Dichlorobenzene	U	0.3	3 1.0	μg/L	1	9/20/2019 08:27
1,3-Dichloropropane	U	0.4	0 1.0	µg/L	1	9/20/2019 08:27
1,4-Dichlorobenzene	U	0.3	5 1.0	μg/L	1	9/20/2019 08:27
2,2-Dichloropropane	U	0.5	2 1.0	µg/L	1	9/20/2019 08:27
2-Butanone	U	0.5	2 5.0	μg/L	1	9/20/2019 08:27
2-Chloroethyl vinyl ether	U	8.0	2 1.0	μg/L	1	9/20/2019 08:27
2-Chlorotoluene	U	0.3	6 1.0	μg/L	1	9/20/2019 08:27
2-Hexanone	U	0.5	9 5.0	μg/L	1	9/20/2019 08:27

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-06

Collection Date: 9/9/2019 12:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-06

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 08:27
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 08:27
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 08:27
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 08:27
Acetone	7.4	J	1.1	10	μg/L	1	9/20/2019 08:27
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 08:27
Acrylonitrile	U		0.50	1.0	µg/L	1	9/20/2019 08:27
Benzene	U		0.46	1.0	μg/L	1	9/20/2019 08:27
Benzyl chloride	U		0.34	1.0	μg/L	1	9/20/2019 08:27
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 08:27
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 08:27
Bromodichloromethane	U		0.49	1.0	μg/L	1	9/20/2019 08:27
Bromoform	U		0.56	1.0	μg/L	1	9/20/2019 08:27
Bromomethane	U		0.90	1.0	μg/L	1	9/20/2019 08:27
Carbon disulfide	U		0.49	1.0	μg/L	1	9/20/2019 08:27
Carbon tetrachloride	U		0.40	1.0	μg/L	1	9/20/2019 08:27
Chlorobenzene	U		0.40	1.0	µg/L	1	9/20/2019 08:27
Chloroethane	U		0.68	1.0	μg/L	1	9/20/2019 08:27
Chloroform	U		0.46	1.0	μg/L	1	9/20/2019 08:27
Chloromethane	U		0.83	1.0	μg/L	1	9/20/2019 08:27
cis-1,2-Dichloroethene	11		0.42	1.0	μg/L	1	9/20/2019 08:27
cis-1,3-Dichloropropene	U		0.57	1.0	μg/L	1	9/20/2019 08:27
Dibromochloromethane	U		0.40	1.0	μg/L	1	9/20/2019 08:27
Dibromomethane	U		0.65	1.0	μg/L	1	9/20/2019 08:27
Dichlorodifluoromethane	U		0.68	1.0	μg/L	1	9/20/2019 08:27
Ethylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 08:27
Hexachlorobutadiene	U		0.56	1.0	μg/L	1	9/20/2019 08:27
Hexachloroethane	U		0.45	1.0	μg/L	1	9/20/2019 08:27
Hexane	U		0.40	1.0	μg/L	1	9/20/2019 08:27
lodomethane	U		2.0	5.0	μg/L	1	9/20/2019 08:27
Isopropylbenzene	U		0.35	1.0	μg/L	1	9/20/2019 08:27
m,p-Xylene	U		0.81	2.0	μg/L	1	9/20/2019 08:27
Methyl tert-butyl ether	U		0.45	1.0	µg/L	1	9/20/2019 08:27
Methylene chloride	U		0.86	5.0	μg/L	1	9/20/2019 08:27
Naphthalene	U		0.77	5.0	μg/L	1	9/20/2019 08:27
n-Butylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 08:27
n-Propylbenzene	U		0.48	1.0	μg/L	1	9/20/2019 08:27
o-Xylene	U		0.40	1.0	μg/L	1	9/20/2019 08:27
p-Isopropyltoluene	U		0.26	1.0	μg/L	1	9/20/2019 08:27
sec-Butylbenzene	U		0.30				
sec-Butylbenzene	U		0.30	1.0	µg/L	1	9/20/2019 08:2

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-06

Collection Date: 9/9/2019 12:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-06

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.33	1.0	μg/L	1	9/20/2019 08:27
tert-Butyl alcohol	U		2.4	20	μg/L	1	9/20/2019 08:27
tert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 08:27
Tetrachloroethene	U		0.39	1.0	μg/L	1	9/20/2019 08:27
Tetrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 08:27
Toluene	U		0.45	1.0	μg/L	1	9/20/2019 08:27
trans-1,2-Dichloroethene	0.59	J	0.48	1.0	μg/L	1	9/20/2019 08:27
trans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 08:27
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	9/20/2019 08:27
Trichloroethene	U		0.43	1.0	μg/L	1	9/20/2019 08:27
Trichlorofluoromethane	U		0.52	1.0	µg/L	1	9/20/2019 08:27
Vinyl acetate	U		0.83	5.0	μg/L	1	9/20/2019 08:27
Vinyl chloride	U		0.53	1.0	μg/L	1	9/20/2019 08:27
Surr: 1,2-Dichloroethane-d4	103			75-120	%REC	1	9/20/2019 08:27
Surr: 4-Bromofluorobenzene	96.4			80-110	%REC	1	9/20/2019 08:27
Surr: Dibromofluoromethane	97.0			85-115	%REC	1	9/20/2019 08:27
Surr: Toluene-d8	97.8			85-110	%REC	1	9/20/2019 08:27
ANIONS BY ION CHROMATOGRAPHY		Ме	thod: SW9056A				Analyst: JDR
Chloride	18		1.6	5.0	mg/L	5	9/12/2019 14:31
Sulfate	34		1.7	5.0	mg/L	5	9/12/2019 14:31
NITROGEN, NITRATE-NITRITE		Ме	thod: E353.2 R2	2.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	U		0.012	0.020	mg/L	1	9/17/2019 11:05
SULFIDE		Me	thod: SW9034				Analyst: DNW
Sulfide	U		0.42	1.0	mg/L	1	9/12/2019 14:00

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-07

Collection Date: 9/9/2019 01:50 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-07

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260C				Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 08:49
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 08:49
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 08:49
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 08:49
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 08:49
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 08:49
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 08:49
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 08:49
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 08:49
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 08:49
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 08:49
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 08:49
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 08:49
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 08:49
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 08:49
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 08:49
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 08:49
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 08:49
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 08:49
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 08:49
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 08:49
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 08:49
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 08:49
2-Butanone	1.1	J	0.52	5.0	μg/L	1	9/20/2019 08:49
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 08:49
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 08:49
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 08:49
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 08:49
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 08:49
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 08:49
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 08:49
Acetone	5.0	J	1.1	10	μg/L	1	9/20/2019 08:49
Acrolein	U		0.38	1.0	µg/L	1	9/20/2019 08:49
Acrylonitrile	U		0.50	1.0	µg/L	1	9/20/2019 08:49
Benzene	U		0.46	1.0	µg/L	1	9/20/2019 08:49
Benzyl chloride	U		0.34	1.0	µg/L	1	9/20/2019 08:49
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 08:49
Bromochloromethane	U		0.45	1.0	µg/L	1	9/20/2019 08:49

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-07

Collection Date: 9/9/2019 01:50 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-07

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U		0.49	1.0	μg/L	1	9/20/2019 08:49
Bromoform	U		0.56	1.0	μg/L	1	9/20/2019 08:49
Bromomethane	U		0.90	1.0	μg/L	1	9/20/2019 08:49
Carbon disulfide	U		0.49	1.0	μg/L	1	9/20/2019 08:49
Carbon tetrachloride	U		0.40	1.0	μg/L	1	9/20/2019 08:4
Chlorobenzene	U		0.40	1.0	μg/L	1	9/20/2019 08:4
Chloroethane	U		0.68	1.0	μg/L	1	9/20/2019 08:4
Chloroform	U		0.46	1.0	μg/L	1	9/20/2019 08:4
Chloromethane	U		0.83	1.0	μg/L	1	9/20/2019 08:4
cis-1,2-Dichloroethene	U		0.42	1.0	μg/L	1	9/20/2019 08:4
cis-1,3-Dichloropropene	U		0.57	1.0	μg/L	1	9/20/2019 08:4
Dibromochloromethane	U		0.40	1.0	μg/L	1	9/20/2019 08:4
Dibromomethane	U		0.65	1.0	μg/L	1	9/20/2019 08:4
Dichlorodifluoromethane	U		0.68	1.0	μg/L	1	9/20/2019 08:4
Ethylbenzene	U		0.34	1.0	µg/L	1	9/20/2019 08:4
Hexachlorobutadiene	U		0.56	1.0	μg/L	1	9/20/2019 08:4
Hexachloroethane	U		0.45	1.0	μg/L	1	9/20/2019 08:4
Hexane	U		0.40	1.0	μg/L	1	9/20/2019 08:4
odomethane	U		2.0	5.0	μg/L	1	9/20/2019 08:4
sopropylbenzene	U		0.35	1.0	μg/L	1	9/20/2019 08:4
n,p-Xylene	U		0.81	2.0	μg/L	1	9/20/2019 08:4
Methyl tert-butyl ether	U		0.45	1.0	μg/L	1	9/20/2019 08:4
Methylene chloride	U		0.86	5.0	μg/L	1	9/20/2019 08:4
Naphthalene	U		0.77	5.0	μg/L	1	9/20/2019 08:4
n-Butylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 08:4
n-Propylbenzene	U		0.48	1.0	μg/L	1	9/20/2019 08:4
o-Xylene	U		0.31	1.0	μg/L	1	9/20/2019 08:4
o-Isopropyltoluene	U		0.26	1.0	μg/L	1	9/20/2019 08:4
sec-Butylbenzene	U		0.30	1.0	µg/L	1	9/20/2019 08:4
Styrene	U		0.33	1.0	μg/L	1	9/20/2019 08:4
ert-Butyl alcohol	U		2.4	20	µg/L	1	9/20/2019 08:49
ert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 08:49
Tetrachloroethene	U		0.39	1.0	μg/L	1	9/20/2019 08:49
etrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 08:4
Toluene	U		0.45	1.0	μg/L	1	9/20/2019 08:49
rans-1,2-Dichloroethene	U		0.48	1.0	μg/L	1	9/20/2019 08:49
rans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 08:49
rans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	9/20/2019 08:49
Trichloroethene	U		0.43	1.0	μg/L	1	9/20/2019 08:49
Trichlorofluoromethane	U		0.52	1.0	μg/L	1	9/20/2019 08:49

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-07

Collection Date: 9/9/2019 01:50 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-07

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 08:49
Vinyl chloride	U	0.53	1.0	μg/L	1	9/20/2019 08:49
Surr: 1,2-Dichloroethane-d4	102		75-120	%REC	1	9/20/2019 08:49
Surr: 4-Bromofluorobenzene	94.4		80-110	%REC	1	9/20/2019 08:49
Surr: Dibromofluoromethane	97.4		85-115	%REC	1	9/20/2019 08:49
Surr: Toluene-d8	99.0		85-110	%REC	1	9/20/2019 08:49

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-08

Collection Date: 9/9/2019 02:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-08

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260C				Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 09:11
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 09:11
1,1,2,2-Tetrachloroethane	U		0.40	1.0	µg/L	1	9/20/2019 09:11
1,1,2-Trichloroethane	U		0.46	1.0	µg/L	1	9/20/2019 09:11
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	µg/L	1	9/20/2019 09:11
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 09:11
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 09:11
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 09:11
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 09:11
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 09:11
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 09:11
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 09:11
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 09:11
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 09:11
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 09:11
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 09:11
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 09:11
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 09:11
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 09:11
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 09:11
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 09:11
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 09:11
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 09:11
2-Butanone	U		0.52	5.0	μg/L	1	9/20/2019 09:11
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 09:11
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 09:11
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 09:11
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 09:11
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 09:11
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 09:11
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 09:11
Acetone	5.5	J	1.1	10	µg/L	1	9/20/2019 09:11
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 09:11
Acrylonitrile	U		0.50	1.0	μg/L	1	9/20/2019 09:11
Benzene	U		0.46	1.0	µg/L	1	9/20/2019 09:11
Benzyl chloride	U		0.34	1.0	μg/L	1	9/20/2019 09:11
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 09:11
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 09:11

Note:

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

Sample ID: COL-GW-08 **Collection Date:** 9/9/2019 02:30 PM

Date: 25-Sep-19

Work Order: 19090657 Lab ID: 19090657-08 Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.49	1.0	μg/L	1	9/20/2019 09:11
Bromoform	U	0.56	1.0	μg/L	1	9/20/2019 09:11
Bromomethane	U	0.90	1.0	μg/L	1	9/20/2019 09:11
Carbon disulfide	U	0.49	1.0	μg/L	1	9/20/2019 09:11
Carbon tetrachloride	U	0.40	1.0	μg/L	1	9/20/2019 09:11
Chlorobenzene	U	0.40	1.0	μg/L	1	9/20/2019 09:11
Chloroethane	U	0.68	1.0	μg/L	1	9/20/2019 09:11
Chloroform	U	0.46	1.0	μg/L	1	9/20/2019 09:11
Chloromethane	U	0.83	1.0	μg/L	1	9/20/2019 09:11
cis-1,2-Dichloroethene	130	2.1	5.0	μg/L	5	9/20/2019 18:11
cis-1,3-Dichloropropene	U	0.57	1.0	μg/L	1	9/20/2019 09:11
Dibromochloromethane	U	0.40	1.0	μg/L	1	9/20/2019 09:11
Dibromomethane	U	0.65	1.0	μg/L	1	9/20/2019 09:11
Dichlorodifluoromethane	U	0.68	1.0	μg/L	1	9/20/2019 09:11
Ethylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 09:11
Hexachlorobutadiene	U	0.56	1.0	μg/L	1	9/20/2019 09:11
Hexachloroethane	U	0.45	1.0	μg/L	1	9/20/2019 09:11
Hexane	U	0.40	1.0	μg/L	1	9/20/2019 09:11
lodomethane	U	2.0	5.0	μg/L	1	9/20/2019 09:11
Isopropylbenzene	U	0.35	1.0	μg/L	1	9/20/2019 09:11
m,p-Xylene	U	0.81	2.0	μg/L	1	9/20/2019 09:11
Methyl tert-butyl ether	U	0.45	1.0	μg/L	1	9/20/2019 09:11
Methylene chloride	U	0.86	5.0	μg/L	1	9/20/2019 09:11
Naphthalene	U	0.77	5.0	μg/L	1	9/20/2019 09:11
n-Butylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 09:11
n-Propylbenzene	U	0.48	1.0	μg/L	1	9/20/2019 09:11
o-Xylene	U	0.31	1.0	μg/L	1	9/20/2019 09:11
p-Isopropyltoluene	U	0.26	1.0	μg/L	1	9/20/2019 09:11
sec-Butylbenzene	U	0.30	1.0	μg/L	1	9/20/2019 09:11
Styrene	U	0.33	1.0	μg/L	1	9/20/2019 09:11
tert-Butyl alcohol	U	2.4	20	μg/L	1	9/20/2019 09:11
tert-Butylbenzene	U	0.39	1.0	μg/L	1	9/20/2019 09:11
Tetrachloroethene	U	0.39	1.0	μg/L	1	9/20/2019 09:11
Tetrahydrofuran	U	0.73	1.0	μg/L	1	9/20/2019 09:11
Toluene	U	0.45	1.0	μg/L	1	9/20/2019 09:11
trans-1,2-Dichloroethene	3.6	0.48	1.0	μg/L	1	9/20/2019 09:11
trans-1,3-Dichloropropene	U	0.38	1.0	μg/L	1	9/20/2019 09:11
trans-1,4-Dichloro-2-butene	U	0.58	2.0	μg/L	1	9/20/2019 09:11
Trichloroethene	U	0.43	1.0	μg/L	1	9/20/2019 09:11
Trichlorofluoromethane	U	0.52	1.0	μg/L	1	9/20/2019 09:11

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-08

Collection Date: 9/9/2019 02:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-08

Matrix: GROUNDWATER

Analyses	Result	Qual MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 09:11
Vinyl chloride	83	0.53	1.0	μg/L	1	9/20/2019 09:11
Surr: 1,2-Dichloroethane-d4	98.8		75-120	%REC	1	9/20/2019 09:11
Surr: 1,2-Dichloroethane-d4	103		75-120	%REC	5	9/20/2019 18:11
Surr: 4-Bromofluorobenzene	98.6		80-110	%REC	1	9/20/2019 09:11
Surr: 4-Bromofluorobenzene	92.9		80-110	%REC	5	9/20/2019 18:11
Surr: Dibromofluoromethane	93.2		85-115	%REC	1	9/20/2019 09:11
Surr: Dibromofluoromethane	95.2		85-115	%REC	5	9/20/2019 18:11
Surr: Toluene-d8	101		85-110	%REC	1	9/20/2019 09:11
Surr: Toluene-d8	99.2		85-110	%REC	5	9/20/2019 18:11

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-09

Collection Date: 9/9/2019 02:55 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-09

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	od: SW82600	;			Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.76	2.0	μg/L	2	9/20/2019 09:3
1,1,1-Trichloroethane	U		0.92	2.0	μg/L	2	9/20/2019 09:3
1,1,2,2-Tetrachloroethane	U		0.80	2.0	μg/L	2	9/20/2019 09:3
1,1,2-Trichloroethane	U		0.92	2.0	µg/L	2	9/20/2019 09:3
1,1,2-Trichlorotrifluoroethane	U		1.0	2.0	µg/L	2	9/20/2019 09:3
1,1-Dichloroethane	U		0.88	2.0	μg/L	2	9/20/2019 09:3
1,1-Dichloroethene	U		0.80	2.0	µg/L	2	9/20/2019 09:3
1,1-Dichloropropene	U		0.74	2.0	µg/L	2	9/20/2019 09:3
1,2,3-Trichlorobenzene	U		0.84	2.0	μg/L	2	9/20/2019 09:3
1,2,3-Trichloropropane	U		0.80	2.0	μg/L	2	9/20/2019 09:3
1,2,4-Trichlorobenzene	U		0.90	2.0	μg/L	2	9/20/2019 09:3
1,2,4-Trimethylbenzene	U		0.90	2.0	μg/L	2	9/20/2019 09:3
1,2-Dibromo-3-chloropropane	U		0.86	2.0	μg/L	2	9/20/2019 09:3
1,2-Dibromoethane	U		0.82	2.0	μg/L	2	9/20/2019 09:3
1,2-Dichlorobenzene	U		0.64	2.0	μg/L	2	9/20/2019 09:3
1,2-Dichloroethane	U		0.88	2.0	μg/L	2	9/20/2019 09:3
1,2-Dichloropropane	U		0.96	2.0	μg/L	2	9/20/2019 09:3
1,3,5-Trichlorobenzene	U		0.62	2.0	μg/L	2	9/20/2019 09:3
1,3,5-Trimethylbenzene	U		1.3	2.0	μg/L	2	9/20/2019 09:3
1,3-Dichlorobenzene	U		0.66	2.0	μg/L	2	9/20/2019 09:3
1,3-Dichloropropane	U		0.80	2.0	µg/L	2	9/20/2019 09:3
1,4-Dichlorobenzene	U		0.70	2.0	μg/L	2	9/20/2019 09:3
2,2-Dichloropropane	U		1.0	2.0	μg/L	2	9/20/2019 09:3:
2-Butanone	U		1.0	10	μg/L	2	9/20/2019 09:33
2-Chloroethyl vinyl ether	U		1.6	2.0	µg/L	2	9/20/2019 09:33
2-Chlorotoluene	U		0.72	2.0	µg/L	2	9/20/2019 09:33
2-Hexanone	U		1.2	10	µg/L	2	9/20/2019 09:33
2-Methylnaphthalene	U		1.3	10	μg/L	2	9/20/2019 09:33
4-Chlorotoluene	U		0.62	2.0	μg/L	2	9/20/2019 09:33
4-Isopropyltoluene	U		0.20	2.0	μg/L	2	9/20/2019 09:33
4-Methyl-2-pentanone	U		1.0	2.0	μg/L	2	9/20/2019 09:33
Acetone	6.2	J	2.2	20	μg/L	2	9/20/2019 09:33
Acrolein	U	-	0.76	2.0	μg/L	2	9/20/2019 09:33
Acrylonitrile	U		1.0	2.0	μg/L	2	9/20/2019 09:33
Benzene	U		0.92	2.0	μg/L	2	9/20/2019 09:33
Benzyl chloride	U		0.68	2.0	μg/L	2	9/20/2019 09:33
Bromobenzene	U		0.76	2.0	μg/L	2	9/20/2019 09:33
Bromochloromethane	U		0.70	2.0	μg/L	2	9/20/2019 09:33

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-09

Collection Date: 9/9/2019 02:55 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-09

Matrix: GROUNDWATER

U			Units	Factor	Date Analyzed
0	0.98	2.0	μg/L	2	9/20/2019 09:33
U	1.1	2.0	μg/L	2	9/20/2019 09:33
U	1.8	2.0			9/20/2019 09:33
U	0.98	2.0	_		9/20/2019 09:33
U	0.80	2.0			9/20/2019 09:33
U	0.80	2.0			9/20/2019 09:33
U	1.4	2.0			9/20/2019 09:33
U	0.92		. •		9/20/2019 09:33
U					9/20/2019 09:33
2.2			-		9/20/2019 09:33
U					9/20/2019 09:33
U					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
			. •		9/20/2019 09:33
			-		9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
_					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
			-		9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
			. •		9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
					9/20/2019 09:33
			. •		9/20/2019 09:33 9/20/2019 09:33
	U U U U U 2.2	U 1.8 U 0.98 U 0.80 U 0.80 U 0.80 U 1.4 U 0.92 U 1.7 2.2 0.84 U 1.1 U 0.80 U 1.3 U 1.4 U 0.68 U 1.1 U 0.68 U 1.1 U 0.90 U 0.80 U 1.7 U 0.90 U 0.70 U 1.6 U 0.90 U 1.7 U 1.5 U 0.68 U 0.96 U 0.96 U 0.62 U 0.62 U 0.66 U 0.78 U 0.76 U 0.90 U 0.90 U 0.76 U 0.90 U 0.76 U 0.90	U 1.8 2.0 U 0.98 2.0 U 0.80 2.0 U 0.80 2.0 U 1.4 2.0 U 0.92 2.0 U 1.7 2.0 2.2 0.84 2.0 U 1.1 2.0 U 0.80 2.0 U 1.3 2.0 U 1.4 2.0 U 0.68 2.0 U 1.1 2.0 U 0.90 2.0 U 0.80 2.0 U 0.70 2.0 U 0.90 2.0 U 1.6 4.0 U 0.90 2.0 U 1.7 10 U 1.5 10 U 0.68 2.0 U 1.7 10 U 0.96 2.0 U 0.66 2.0 U 0.66 2.0 U 0.66 2.0 U 0.78 2.0 U 0.78 2.0 U 0.90 2.0 U 0.78 2.0 U 0.90 2.0 U 0.90 2.0 U 0.78 2.0 U 0.90 2.0 U 0.78 2.0 U 0.90 2.0	U 1.8 2.0 µg/L U 0.98 2.0 µg/L U 0.80 2.0 µg/L U 0.80 2.0 µg/L U 1.4 2.0 µg/L U 1.7 2.0 µg/L U 1.7 2.0 µg/L U 1.1 2.0 µg/L U 1.1 2.0 µg/L U 1.3 2.0 µg/L U 1.4 2.0 µg/L U 1.3 2.0 µg/L U 1.4 2.0 µg/L U 1.5 µg/L U 1.1 2.0 µg/L U 0.80 2.0 µg/L U 1.1 2.0 µg/L U 1.1 2.0 µg/L U 0.80 2.0 µg/L U 0.80 2.0 µg/L U 1.5 10 µg/L U 1.5 10 µg/L U 1.5 10 µg/L U 0.68 2.0 µg/L U 0.66 2.0 µg/L U 0.66 2.0 µg/L U 0.66 2.0 µg/L U 0.66 2.0 µg/L U 0.78 2.0 µg/L U 0.99 2.0 µg/L U 0.78 2.0 µg/L U 0.99 2.0 µg/L U 0.78 2.0 µg/L U 0.99 2.0 µg/L	U 1.8 2.0 µg/L 2 U 0.98 2.0 µg/L 2 U 0.80 2.0 µg/L 2 U 0.80 2.0 µg/L 2 U 1.4 2.0 µg/L 2 U 1.7 2.0 µg/L 2 2.2 0.84 2.0 µg/L 2 U 1.1 2.0 µg/L 2 U 0.80 2.0 µg/L 2 2.2 0.84 2.0 µg/L 2 U 1.1 2.0 µg/L 2 U 1.1 2.0 µg/L 2 U 0.80 2.0 µg/L 2 U 1.1 2.0 µg/L 2 U 0.88 2.0 µg/L 2 U 1.4 2.0 µg/L 2 U 0.68 2.0 µg/L 2 U 0.90 2.0 µg/L 2 U 0.90 2.0 µg/L 2 U 0.80 2.0 µg/L 2 U 0.80 2.0 µg/L 2 U 0.80 2.0 µg/L 2 U 0.90 2.0 µg/L 2 U 0.80 2.0 µg/L 2 U 0.70 2.0 µg/L 2 U 0.66 2.0 µg/L 2 U 0.90 2.0 µg/L 2 U 0.68 2.0 µg/L 2 U 0.66 2.0 µg/L 2 U 0.66 2.0 µg/L 2 U 0.67 2.0 µg/L 2 U 0.68 2.0 µg/L 2 U 0.68 2.0 µg/L 2 U 0.69 2.0 µg/L 2 U 0.60 2.0 µg/L 2 U 0.78 2.0 µg/L 2 U 0.78 2.0 µg/L 2 U 0.78 2.0 µg/L 2 U 0.90 2.0 µg/L 2 U 0.90 2.0 µg/L 2 U 0.78 2.0 µg/L 2 U 0.96 2.0 µg/L 2 U 0.99 2.0 µg/L 2

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-09

Collection Date: 9/9/2019 02:55 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-09

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	1.7	10	μg/L	2	9/20/2019 09:33
Vinyl chloride	U	1.1	2.0	μg/L	2	9/20/2019 09:33
Surr: 1,2-Dichloroethane-d4	98.2		75-120	%REC	2	9/20/2019 09:33
Surr: 4-Bromofluorobenzene	96.5		80-110	%REC	2	9/20/2019 09:33
Surr: Dibromofluoromethane	93.6		85-115	%REC	2	9/20/2019 09:33
Surr: Toluene-d8	97.4		85-110	%REC	2	9/20/2019 09:33

Date: 25-Sep-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-10

Collection Date: 9/9/2019 04:00 PM

Work Order: 19090657

Lab ID: 19090657-10

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260C				Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 09:55
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 09:55
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 09:55
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 09:55
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 09:55
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 09:55
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 09:55
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 09:55
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 09:55
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 09:55
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 09:55
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 09:55
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 09:55
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 09:55
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 09:55
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 09:55
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 09:55
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 09:55
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 09:55
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 09:55
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 09:55
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 09:55
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 09:55
2-Butanone	U		0.52	5.0	μg/L	1	9/20/2019 09:55
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 09:55
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 09:55
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 09:55
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 09:55
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 09:55
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 09:55
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 09:55
Acetone	3.8	J	1.1	10	μg/L	1	9/20/2019 09:55
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 09:55
Acrylonitrile	U		0.50	1.0	μg/L	1	9/20/2019 09:55
Benzene	U		0.46	1.0	μg/L	1	9/20/2019 09:55
Benzyl chloride	U		0.34	1.0	μg/L	1	9/20/2019 09:55
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 09:55
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 09:55

Note:

Date: 25-Sep-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-10

Collection Date: 9/9/2019 04:00 PM

Work Order: 19090657

Lab ID: 19090657-10

Matrix: GROUNDWATER

analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.49	1.0	μg/L	1	9/20/2019 09:5
Bromoform	U	0.56	1.0	μg/L	1	9/20/2019 09:55
Bromomethane	U	0.90	1.0	μg/L	1	9/20/2019 09:55
Carbon disulfide	U	0.49	1.0	μg/L	1	9/20/2019 09:55
Carbon tetrachloride	U	0.40	1.0	μg/L	1	9/20/2019 09:55
Chlorobenzene	U	0.40	1.0	μg/L	1	9/20/2019 09:5
Chloroethane	U	0.68	1.0	μg/L	1	9/20/2019 09:5
Chloroform	U	0.46	1.0	µg/L	1	9/20/2019 09:5
Chloromethane	U	0.83	1.0	μg/L	1	9/20/2019 09:5
cis-1,2-Dichloroethene	35	0.42	1.0	μg/L	1	9/20/2019 09:5
cis-1,3-Dichloropropene	U	0.57	1.0	μg/L	1	9/20/2019 09:5
Dibromochloromethane	U	0.40	1.0	μg/L	1	9/20/2019 09:5
Dibromomethane	U	0.65	1.0	μg/L	1	9/20/2019 09:5
Dichlorodifluoromethane	U	0.68	1.0	μg/L	1	9/20/2019 09:5
Ethylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 09:5
Hexachlorobutadiene	U	0.56	1.0	μg/L	1	9/20/2019 09:5
Hexachloroethane	U	0.45	1.0	μg/L	1	9/20/2019 09:5
Hexane	U	0.40	1.0	μg/L	1	9/20/2019 09:5
lodomethane	U	2.0	5.0	μg/L	1	9/20/2019 09:5
Isopropylbenzene	U	0.35	1.0	μg/L	1	9/20/2019 09:5
m,p-Xylene	U	0.81	2.0	μg/L	1	9/20/2019 09:5
Methyl tert-butyl ether	U	0.45	1.0	μg/L	1	9/20/2019 09:5
Methylene chloride	U	0.86	5.0	μg/L	1	9/20/2019 09:5
Naphthalene	U	0.77	5.0	μg/L	1	9/20/2019 09:5
n-Butylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 09:5
n-Propylbenzene	U	0.48	1.0	μg/L	1	9/20/2019 09:5
o-Xylene	U	0.31	1.0	μg/L	1	9/20/2019 09:5
p-Isopropyltoluene	U	0.26	1.0	μg/L	1	9/20/2019 09:5
sec-Butylbenzene	U	0.30	1.0	μg/L	1	9/20/2019 09:5
Styrene	U	0.33	1.0	μg/L	1	9/20/2019 09:5
tert-Butyl alcohol	8.5 J	2.4	20	μg/L	1	9/20/2019 09:5
tert-Butylbenzene	U	0.39	1.0	μg/L	1	9/20/2019 09:5
Tetrachloroethene	U	0.39	1.0	μg/L	1	9/20/2019 09:5
Tetrahydrofuran	U	0.73	1.0	μg/L	1	9/20/2019 09:5
Toluene	U	0.45	1.0	μg/L	1	9/20/2019 09:5
trans-1,2-Dichloroethene	U	0.48	1.0	μg/L	1	9/20/2019 09:5
trans-1,3-Dichloropropene	U	0.38	1.0	μg/L	1	9/20/2019 09:5
trans-1,4-Dichloro-2-butene	U	0.58	2.0	μg/L	1	9/20/2019 09:5
Trichloroethene	U	0.43	1.0	μg/L	1	9/20/2019 09:5
Trichlorofluoromethane	U	0.52	1.0	μg/L	1	9/20/2019 09:5

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-10

Collection Date: 9/9/2019 04:00 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-10

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed		
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 09:55		
Vinyl chloride	57	0.53	1.0	μg/L	1	9/20/2019 09:55		
Surr: 1,2-Dichloroethane-d4	102		75-120	%REC	1	9/20/2019 09:55		
Surr: 4-Bromofluorobenzene	93.0		80-110	%REC	1	9/20/2019 09:55		
Surr: Dibromofluoromethane	97.5		85-115	%REC	1	9/20/2019 09:55		
Surr: Toluene-d8	97.9		85-110	%REC	1	9/20/2019 09:55		

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

Sample ID: COL-GW-11 **Collection Date:** 9/9/2019 04:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-11

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260 0	;			Analyst: MF
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 10:17
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 10:17
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 10:17
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 10:17
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 10:17
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 10:17
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 10:17
1,1-Dichloropropene	U		0.37	1.0	µg/L	1	9/20/2019 10:17
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 10:17
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 10:17
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 10:17
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 10:17
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 10:17
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 10:17
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 10:17
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 10:17
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 10:17
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 10:17
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 10:17
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 10:17
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 10:17
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 10:17
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 10:17
2-Butanone	U		0.52	5.0	μg/L	1	9/20/2019 10:17
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 10:17
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 10:17
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 10:17
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 10:17
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 10:17
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 10:17
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 10:17
Acetone	4.4	J	1.1	10	μg/L	1	9/20/2019 10:17
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 10:17
Acrylonitrile	U		0.50	1.0	μg/L	1	9/20/2019 10:17
Benzene	U		0.46	1.0	μg/L	1	9/20/2019 10:17
Benzyl chloride	U		0.34	1.0	μg/L	1	9/20/2019 10:17
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 10:17
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 10:17

Date: 25-Sep-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-11

Collection Date: 9/9/2019 04:30 PM

Work Order: 19090657

Lab ID: 19090657-11

Matrix: GROUNDWATER

Analyses	Result (Qual MD	Report L Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.	49 1.0	μg/L	1	9/20/2019 10:17
Bromoform	U	0.	56 1.0	μg/L	1	9/20/2019 10:17
Bromomethane	U	0.	90 1.0	μg/L	1	9/20/2019 10:17
Carbon disulfide	U	0.	49 1.0	μg/L	1	9/20/2019 10:17
Carbon tetrachloride	U	0.	40 1.0	μg/L	1	9/20/2019 10:17
Chlorobenzene	U	0.	40 1.0	μg/L	1	9/20/2019 10:17
Chloroethane	U	0.	68 1.0	μg/L	1	9/20/2019 10:17
Chloroform	U	0.	46 1.0	μg/L	1	9/20/2019 10:17
Chloromethane	U	0.	83 1.0	μg/L	1	9/20/2019 10:17
cis-1,2-Dichloroethene	6.1	0.	42 1.0	μg/L	1	9/20/2019 10:17
cis-1,3-Dichloropropene	U	0.	57 1.0	μg/L	1	9/20/2019 10:17
Dibromochloromethane	U	0.	40 1.0	μg/L	1	9/20/2019 10:17
Dibromomethane	U	0.	65 1.0	μg/L	1	9/20/2019 10:17
Dichlorodifluoromethane	U	0.	68 1.0	μg/L	1	9/20/2019 10:17
Ethylbenzene	U	0.	34 1.0	μg/L	1	9/20/2019 10:17
Hexachlorobutadiene	U	0.	56 1.0	μg/L	1	9/20/2019 10:17
Hexachloroethane	U	0.	45 1.0	μg/L	1	9/20/2019 10:17
Hexane	U	0.	40 1.0	μg/L	1	9/20/2019 10:17
lodomethane	U		2.0 5.0	µg/L	1	9/20/2019 10:17
Isopropylbenzene	U	0.	35 1.0	µg/L	1	9/20/2019 10:17
m,p-Xylene	U	0.	81 2.0	μg/L	1	9/20/2019 10:17
Methyl tert-butyl ether	U	0.	45 1.0	μg/L	1	9/20/2019 10:17
Methylene chloride	U	0.	86 5.0	μg/L	1	9/20/2019 10:17
Naphthalene	U	0.	77 5.0	μg/L	1	9/20/2019 10:17
n-Butylbenzene	U	0.	34 1.0	μg/L	1	9/20/2019 10:17
n-Propylbenzene	U	0.	48 1.0	μg/L	1	9/20/2019 10:17
o-Xylene	U	0.	31 1.0	μg/L	1	9/20/2019 10:17
p-Isopropyltoluene	U	0.	26 1.0	μg/L	1	9/20/2019 10:17
sec-Butylbenzene	U	0.	30 1.0	μg/L	1	9/20/2019 10:17
Styrene	U	0.	33 1.0	μg/L	1	9/20/2019 10:17
tert-Butyl alcohol	5.0	J :	2.4 20	μg/L	1	9/20/2019 10:17
tert-Butylbenzene	U	0.	39 1.0	μg/L	1	9/20/2019 10:17
Tetrachloroethene	U	0.	39 1.0	μg/L	1	9/20/2019 10:17
Tetrahydrofuran	U	0.	73 1.0	μg/L	1	9/20/2019 10:17
Toluene	U	0.	45 1.0	μg/L	1	9/20/2019 10:17
trans-1,2-Dichloroethene	U	0.	48 1.0	μg/L	1	9/20/2019 10:17
trans-1,3-Dichloropropene	U	0.	38 1.0	μg/L	1	9/20/2019 10:17
trans-1,4-Dichloro-2-butene	U	0.	58 2.0	μg/L	1	9/20/2019 10:17
Trichloroethene	U	0.	43 1.0	μg/L	1	9/20/2019 10:17
Trichlorofluoromethane	U	0	52 1.0	μg/L	1	9/20/2019 10:17

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-11

Collection Date: 9/9/2019 04:30 PM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-11

Matrix: GROUNDWATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 10:17
Vinyl chloride	43	0.53	1.0	μg/L	1	9/20/2019 10:17
Surr: 1,2-Dichloroethane-d4	98.4		75-120	%REC	1	9/20/2019 10:17
Surr: 4-Bromofluorobenzene	95.4		80-110	%REC	1	9/20/2019 10:17
Surr: Dibromofluoromethane	97.2		85-115	%REC	1	9/20/2019 10:17
Surr: Toluene-d8	98.8		85-110	%REC	1	9/20/2019 10:17

Date: 25-Sep-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-12

Collection Date: 9/10/2019 08:15 AM

Work Order: 19090657

Report

Dilution

Lab ID: 19090657-12 Matrix: GROUNDWATER

Date Analyzed Analyses Result Qual MDL Limit **Factor** Units **GASES IN WATER** Method: RSK-175 Analyst: KB Ethane 10 1 9/23/2019 14:43 1.5 5.0 μg/L Ethene 2.7 9/23/2019 14:43 U 5.0 μg/L 1 Methane 240 16 25 μg/L 5 9/23/2019 14:45 **METALS BY ICP-MS (DISSOLVED)** Method: SW6020A Prep: FILTER / 9/20/19 Analyst: STP 0.17 0.050 0.080 mg/L 9/20/2019 16:45 0.0025 0.0050 9/20/2019 16:45 Manganese 0.31 mg/L 1 Method: SW8260B 1,4-DIOXANE BY SELECT ION MONITORING Analyst: AK 1,4-Dioxane U 0.44 0.60 µg/L 9/18/2019 12:33 1 Surr: Toluene-d8 108 74-124 %REC 9/18/2019 12:33 1 **VOLATILE ORGANIC COMPOUNDS** Method: SW8260C Analyst: BG 1,1,1,2-Tetrachloroethane U 0.38 1.0 9/20/2019 22:19 µg/L 1 0.46 1.1.1-Trichloroethane U 1.0 µg/L 9/20/2019 22:19 1 1,1,2,2-Tetrachloroethane U 0.40 1.0 μg/L 1 9/20/2019 22:19 1,1,2-Trichloroethane 0.59 0.46 1.0 μg/L 1 9/20/2019 22:19 1,1,2-Trichlorotrifluoroethane 0.52 U μg/L 9/20/2019 22:19 1.0 1 1,1-Dichloroethane U 0.44 1.0 μg/L 9/20/2019 22:19 1,1-Dichloroethene 0.40 9/20/2019 22:19 3.6 1.0 µq/L μg/L 1,1-Dichloropropene U 0.37 1.0 9/20/2019 22:19 1,2,3-Trichlorobenzene U 0.42 1.0 μg/L 9/20/2019 22:19 1,2,3-Trichloropropane U 0.40 1.0 µg/L 9/20/2019 22:19 1,2,4-Trichlorobenzene U 0.45 1.0 µg/L 9/20/2019 22:19 1,2,4-Trimethylbenzene U 0.45 1.0 9/20/2019 22:19 μg/L 1,2-Dibromo-3-chloropropane П 0.43 1.0 9/20/2019 22:19 μg/L 1,2-Dibromoethane U 0.41 1.0 μg/L 9/20/2019 22:19 1,2-Dichlorobenzene U 0.32 1.0 µg/L 9/20/2019 22:19 1,2-Dichloroethane U 0.44 μg/L 1.0 9/20/2019 22:19 0.67 0.48 1,2-Dichloropropane 1.0 μg/L 9/20/2019 22:19 1,3,5-Trichlorobenzene U 0.31 1.0 µg/L 9/20/2019 22:19 1,3,5-Trimethylbenzene U 0.65 1.0 μg/L 9/20/2019 22:19 1,3-Dichlorobenzene 0.33 U μg/L 9/20/2019 22:19 1.0 1,3-Dichloropropane U 0.40 1.0 μg/L 9/20/2019 22:19

0.35

0.52

0.52

0.82

0.36

0.59

1.0

1.0

5.0

1.0

1.0

5.0

µg/L

µg/L

μg/L

μg/L

μg/L

μg/L

Note:

1,4-Dichlorobenzene

2,2-Dichloropropane

2-Chloroethyl vinyl ether

2-Butanone

2-Hexanone

2-Chlorotoluene

See Qualifiers page for a list of qualifiers and their definitions.

U

U

U

U

U

9/20/2019 22:19

9/20/2019 22:19

9/20/2019 22:19

9/20/2019 22:19

9/20/2019 22:19

9/20/2019 22:19

1

1

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-12

Collection Date: 9/10/2019 08:15 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-12

Matrix: GROUNDWATER

analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U	0.66	5.0	μg/L	1	9/20/2019 22:19
4-Chlorotoluene	U	0.31	1.0	μg/L	1	9/20/2019 22:19
4-Isopropyltoluene	U	0.10	1.0	μg/L	1	9/20/2019 22:19
4-Methyl-2-pentanone	U	0.52	1.0	μg/L	1	9/20/2019 22:19
Acetone	16	1.1	10	μg/L	1	9/20/2019 22:19
Acrolein	U	0.38	1.0	μg/L	1	9/20/2019 22:19
Acrylonitrile	U	0.50	1.0	μg/L	1	9/20/2019 22:19
Benzene	U	0.46	1.0	μg/L	1	9/20/2019 22:19
Benzyl chloride	U	0.34	1.0	μg/L	1	9/20/2019 22:19
Bromobenzene	U	0.38	1.0	μg/L	1	9/20/2019 22:19
Bromochloromethane	U	0.45	1.0	μg/L	1	9/20/2019 22:19
Bromodichloromethane	U	0.49	1.0	μg/L	1	9/20/2019 22:19
Bromoform	U	0.56	1.0	μg/L	1	9/20/2019 22:19
Bromomethane	U	0.90	1.0	μg/L	1	9/20/2019 22:19
Carbon disulfide	U	0.49	1.0	μg/L	1	9/20/2019 22:19
Carbon tetrachloride	U	0.40	1.0	μg/L	1	9/20/2019 22:19
Chlorobenzene	U	0.40	1.0	μg/L	1	9/20/2019 22:19
Chloroethane	U	0.68	1.0	μg/L	1	9/20/2019 22:19
Chloroform	U	0.46	1.0	μg/L	1	9/20/2019 22:19
Chloromethane	U	0.83	1.0	μg/L	1	9/20/2019 22:19
cis-1,2-Dichloroethene	260	2.1	5.0	μg/L	5	9/20/2019 02:43
cis-1,3-Dichloropropene	U	0.57	1.0	μg/L	1	9/20/2019 22:19
Dibromochloromethane	U	0.40	1.0	μg/L	1	9/20/2019 22:19
Dibromomethane	U	0.65	1.0	μg/L	1	9/20/2019 22:19
Dichlorodifluoromethane	U	0.68	1.0	μg/L	1	9/20/2019 22:19
Ethylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 22:19
Hexachlorobutadiene	U	0.56	1.0	μg/L	1	9/20/2019 22:19
Hexachloroethane	U	0.45	1.0	μg/L	1	9/20/2019 22:19
Hexane	U	0.40	1.0	μg/L	1	9/20/2019 22:19
lodomethane	U	2.0	5.0	μg/L	1	9/20/2019 22:19
Isopropylbenzene	U	0.35	1.0	μg/L	1	9/20/2019 22:19
m,p-Xylene	U	0.81	2.0	μg/L	1	9/20/2019 22:19
Methyl tert-butyl ether	U	0.45	1.0	μg/L	1	9/20/2019 22:19
Methylene chloride	U	0.86	5.0	μg/L	1	9/20/2019 22:19
Naphthalene	U	0.77	5.0	µg/L	1	9/20/2019 22:19
n-Butylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 22:19
n-Propylbenzene	U	0.48	1.0	μg/L	1	9/20/2019 22:19
o-Xylene	U	0.31	1.0	μg/L	1	9/20/2019 22:19
p-Isopropyltoluene	U	0.26	1.0	μg/L	1	9/20/2019 22:19
sec-Butylbenzene	U	0.30	1.0	µg/L	1	9/20/2019 22:19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-12

Collection Date: 9/10/2019 08:15 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-12

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.33	1.0	μg/L	1	9/20/2019 22:19
tert-Butyl alcohol	U		2.4	20	μg/L	1	9/20/2019 22:19
tert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 22:19
Tetrachloroethene	U		0.39	1.0	μg/L	1	9/20/2019 22:19
Tetrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 22:19
Toluene	U		0.45	1.0	μg/L	1	9/20/2019 22:19
trans-1,2-Dichloroethene	9.8		0.48	1.0	μg/L	1	9/20/2019 22:19
trans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 22:19
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	9/20/2019 22:19
Trichloroethene	220		2.2	5.0	μg/L	5	9/20/2019 02:43
Trichlorofluoromethane	U		0.52	1.0	μg/L	1	9/20/2019 22:19
Vinyl acetate	U		0.83	5.0	μg/L	1	9/20/2019 22:19
Vinyl chloride	39		0.53	1.0	μg/L	1	9/20/2019 22:19
Surr: 1,2-Dichloroethane-d4	99.2			75-120	%REC	5	9/20/2019 02:43
Surr: 1,2-Dichloroethane-d4	99.3			75-120	%REC	1	9/20/2019 22:19
Surr: 4-Bromofluorobenzene	96.1			80-110	%REC	5	9/20/2019 02:43
Surr: 4-Bromofluorobenzene	93.6			80-110	%REC	1	9/20/2019 22:19
Surr: Dibromofluoromethane	93.5			85-115	%REC	5	9/20/2019 02:43
Surr: Dibromofluoromethane	96.2			85-115	%REC	1	9/20/2019 22:19
Surr: Toluene-d8	102			85-110	%REC	5	9/20/2019 02:43
Surr: Toluene-d8	98.0			85-110	%REC	1	9/20/2019 22:19
ANIONS BY ION CHROMATOGRAPHY		Meth	od: SW9056A				Analyst: JDR
Chloride	67		3.1	10	mg/L	10	9/12/2019 14:50
Sulfate	99		3.4	10	mg/L	10	9/12/2019 14:50
NITROGEN, NITRATE-NITRITE		Meth	od: E353.2 R2	2.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	U		0.012	0.020	mg/L	1	9/17/2019 11:06
SULFIDE		Meth	od: SW9034				Analyst: DNW
Sulfide	U		0.42	1.0	mg/L	1	9/12/2019 14:00

Date: 25-Sep-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-13

Collection Date: 9/10/2019 09:00 AM

Work Order: 19090657

Lab ID: 19090657-13

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
GASES IN WATER		Method	: RSK-175				Analyst: KB
Ethane	12		1.5	5.0	μg/L	1	9/23/2019 14:48
Ethene	U		2.7	5.0	μg/L	1	9/23/2019 14:48
Methane	170		3.3	5.0	μg/L	1	9/23/2019 14:48
METALS BY ICP-MS (DISSOLVED)		Method	: SW6020A		Prep: FIL1	TER / 9/20/19	Analyst: STP
Iron	U		0.050	0.080	mg/L	1	9/20/2019 16:47
Manganese	0.35		0.0025	0.0050	mg/L	1	9/20/2019 16:47
1,4-DIOXANE BY SELECT ION MONITORING	G	Method	: SW8260B				Analyst: AK
1,4-Dioxane	U		0.44	0.60	μg/L	1	9/18/2019 12:48
Surr: Toluene-d8	102			74-124	%REC	1	9/18/2019 12:48
VOLATILE ORGANIC COMPOUNDS		Method	: SW8260C				Analyst: BG
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 21:55
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 21:55
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 21:55
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 21:55
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 21:55
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 21:55
1,1-Dichloroethene	0.84	J	0.40	1.0	μg/L	1	9/20/2019 21:55
1,1-Dichloropropene	U		0.37	1.0	µg/L	1	9/20/2019 21:55
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 21:55
1,2,3-Trichloropropane	Ü		0.40	1.0	μg/L	1	9/20/2019 21:55
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 21:55
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 21:55
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 21:55
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 21:55
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 21:55
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 21:55
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 21:55
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 21:55
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 21:55
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 21:55
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 21:55
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 21:55
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 21:55
2-Butanone	U		0.52	5.0	μg/L	1	9/20/2019 21:55
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 21:55
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 21:55
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 21:55

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-13

Collection Date: 9/10/2019 09:00 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-13

Matrix: GROUNDWATER

Analyses	Result Qu	ual MDL	Report Limit	Units	Dilution Factor	Date Analyzed
2-Methylnaphthalene	U	0.66	5.0	μg/L	1	9/20/2019 21:55
4-Chlorotoluene	U	0.31	1.0	μg/L	1	9/20/2019 21:55
4-Isopropyltoluene	U	0.10	1.0	μg/L	1	9/20/2019 21:55
4-Methyl-2-pentanone	U	0.52	1.0	μg/L	1	9/20/2019 21:55
Acetone	8.9	J 1.1	10	μg/L	1	9/20/2019 21:55
Acrolein	U	0.38	1.0	μg/L	1	9/20/2019 21:55
Acrylonitrile	U	0.50	1.0	μg/L	1	9/20/2019 21:55
Benzene	U	0.46	1.0	μg/L	1	9/20/2019 21:55
Benzyl chloride	U	0.34	1.0	μg/L	1	9/20/2019 21:55
Bromobenzene	U	0.38	1.0	μg/L	1	9/20/2019 21:55
Bromochloromethane	U	0.45	1.0	μg/L	1	9/20/2019 21:55
Bromodichloromethane	U	0.49	1.0	μg/L	1	9/20/2019 21:55
Bromoform	U	0.56	1.0	μg/L	1	9/20/2019 21:55
Bromomethane	U	0.90	1.0	μg/L	1	9/20/2019 21:55
Carbon disulfide	U	0.49	1.0	μg/L	1	9/20/2019 21:55
Carbon tetrachloride	U	0.40	1.0	μg/L	1	9/20/2019 21:55
Chlorobenzene	U	0.40	1.0	μg/L	1	9/20/2019 21:55
Chloroethane	U	0.68	1.0	μg/L	1	9/20/2019 21:55
Chloroform	U	0.46	1.0	μg/L	1	9/20/2019 21:55
Chloromethane	1.0	0.83	1.0	μg/L	1	9/20/2019 21:55
cis-1,2-Dichloroethene	120	2.1	5.0	μg/L	5	9/20/2019 03:07
cis-1,3-Dichloropropene	U	0.57	1.0	μg/L	1	9/20/2019 21:55
Dibromochloromethane	U	0.40	1.0	μg/L	1	9/20/2019 21:55
Dibromomethane	U	0.65	1.0	µg/L	1	9/20/2019 21:55
Dichlorodifluoromethane	U	0.68	1.0	µg/L	1	9/20/2019 21:55
Ethylbenzene	U	0.34	1.0	µg/L	1	9/20/2019 21:55
Hexachlorobutadiene	U	0.56	1.0	μg/L	1	9/20/2019 21:55
Hexachloroethane	U	0.45	1.0	μg/L	1	9/20/2019 21:55
Hexane	U	0.40	1.0	µg/L	1	9/20/2019 21:55
lodomethane	U	2.0	5.0	μg/L	1	9/20/2019 21:55
Isopropylbenzene	U	0.35	1.0	µg/L	1	9/20/2019 21:55
m,p-Xylene	U	0.81	2.0	μg/L	1	9/20/2019 21:55
Methyl tert-butyl ether	U	0.45	1.0	μg/L	1	9/20/2019 21:55
Methylene chloride	U	0.86	5.0	μg/L	1	9/20/2019 21:55
Naphthalene	U	0.77	5.0	μg/L	1	9/20/2019 21:55
n-Butylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 21:55
n-Propylbenzene	U	0.48	1.0	μg/L	1	9/20/2019 21:55
o-Xylene	U	0.31	1.0	μg/L	1	9/20/2019 21:55
p-lsopropyltoluene	U	0.26	1.0	µg/L	1	9/20/2019 21:55
sec-Butylbenzene	U	0.30	1.0	μg/L	1	9/20/2019 21:55

Note:

inde Group, Con

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-13

Collection Date: 9/10/2019 09:00 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-13

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Styrene	U		0.33	1.0	μg/L	1	9/20/2019 21:55
tert-Butyl alcohol	U		2.4	20	μg/L	1	9/20/2019 21:55
tert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 21:55
Tetrachloroethene	U		0.39	1.0	μg/L	1	9/20/2019 21:55
Tetrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 21:55
Toluene	U		0.45	1.0	μg/L	1	9/20/2019 21:55
trans-1,2-Dichloroethene	3.1		0.48	1.0	μg/L	1	9/20/2019 21:55
trans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 21:55
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	9/20/2019 21:55
Trichloroethene	13		0.43	1.0	μg/L	1	9/20/2019 21:55
Trichlorofluoromethane	U		0.52	1.0	μg/L	1	9/20/2019 21:55
Vinyl acetate	U		0.83	5.0	μg/L	1	9/20/2019 21:55
Vinyl chloride	2.7		0.53	1.0	μg/L	1	9/20/2019 21:55
Surr: 1,2-Dichloroethane-d4	102			75-120	%REC	5	9/20/2019 03:07
Surr: 1,2-Dichloroethane-d4	98.0			75-120	%REC	1	9/20/2019 21:55
Surr: 4-Bromofluorobenzene	95.0			80-110	%REC	5	9/20/2019 03:07
Surr: 4-Bromofluorobenzene	95.2			80-110	%REC	1	9/20/2019 21:55
Surr: Dibromofluoromethane	98.6			85-115	%REC	5	9/20/2019 03:07
Surr: Dibromofluoromethane	94.8			85-115	%REC	1	9/20/2019 21:55
Surr: Toluene-d8	99.0			85-110	%REC	5	9/20/2019 03:07
Surr: Toluene-d8	97.5			85-110	%REC	1	9/20/2019 21:55
ANIONS BY ION CHROMATOGRAPHY		Meth	od: SW9056A	Ĭ.			Analyst: JDR
Chloride	59		3.1	10	mg/L	10	9/12/2019 16:07
Sulfate	55		3.4	10	mg/L	10	9/12/2019 16:07
NITROGEN, NITRATE-NITRITE		Meth	od: E353.2 R 2	2.0			Analyst: JZB
Nitrogen, Nitrate-Nitrite	U		0.012	0.020	mg/L	1	9/17/2019 11:07
SULFIDE		Meth	od: SW9034				Analyst: DNW
Sulfide	U		0.42	1.0	mg/L	1	9/12/2019 14:00

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-14

Collection Date: 9/10/2019 09:45 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-14

Matrix: GROUNDWATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed	
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260C				Analyst: BG	
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 03:32	
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 03:32	
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 03:32	
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 03:32	
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 03:32	
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 03:32	
1,1-Dichloroethene	1.5		0.40	1.0	μg/L	1	9/20/2019 03:32	
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 03:32	
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 03:32	
1,2,3-Trichloropropane	U		0.40	1.0	µg/L	1	9/20/2019 03:32	
1,2,4-Trichlorobenzene	U		0.45	1.0	µg/L	1	9/20/2019 03:32	
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 03:32	
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 03:32	
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 03:32	
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 03:32	
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 03:32	
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 03:32	
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 03:32	
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 03:32	
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 03:32	
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 03:32	
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 03:32	
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 03:32	
2-Butanone	U		0.52	5.0	μg/L	1	9/20/2019 03:32	
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 03:32	
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 03:32	
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 03:32	
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 03:32	
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 03:32	
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 03:32	
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 03:32	
Acetone	6.3	J	1.1	10	μg/L	1	9/20/2019 03:32	
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 03:32	
Acrylonitrile	U		0.50	1.0	μg/L	1	9/20/2019 03:32	
Benzene	U		0.46	1.0	μg/L	1	9/20/2019 03:32	
Benzyl chloride	U		0.34	1.0	μg/L	1	9/20/2019 03:32	
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 03:32	
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 03:32	

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

Sample ID: COL-GW-14

Collection Date: 9/10/2019 09:45 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-14 Matrix: GROUNDWATER

analyses	Result Qu	ıal MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U	0.49	1.0	μg/L	1	9/20/2019 03:32
Bromoform	U	0.56	1.0	μg/L	1	9/20/2019 03:32
Bromomethane	U	0.90	1.0	μg/L	1	9/20/2019 03:32
Carbon disulfide	U	0.49	1.0	μg/L	1	9/20/2019 03:32
Carbon tetrachloride	U	0.40	1.0	µg/L	1	9/20/2019 03:32
Chlorobenzene	U	0.40	1.0	μg/L	1	9/20/2019 03:32
Chloroethane	U	0.68	1.0	μg/L	1	9/20/2019 03:32
Chloroform	U	0.46	1.0	μg/L	1	9/20/2019 03:32
Chloromethane	U	0.83	1.0	μg/L	1	9/20/2019 03:32
cis-1,2-Dichloroethene	230	2.1	5.0	μg/L	5	9/20/2019 18:35
cis-1,3-Dichloropropene	U	0.57	1.0	μg/L	1	9/20/2019 03:32
Dibromochloromethane	U	0.40	1.0	μg/L	1	9/20/2019 03:32
Dibromomethane	U	0.65	1.0	μg/L	1	9/20/2019 03:32
Dichlorodifluoromethane	U	0.68	1.0	μg/L	1	9/20/2019 03:32
Ethylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 03:32
Hexachlorobutadiene	U	0.56	1.0	μg/L	1	9/20/2019 03:32
Hexachloroethane	U	0.45	1.0	μg/L	1	9/20/2019 03:32
Hexane	U	0.40	1.0	μg/L	1	9/20/2019 03:32
lodomethane	U	2.0	5.0	μg/L	1	9/20/2019 03:32
Isopropylbenzene	U	0.35	1.0	μg/L	1	9/20/2019 03:32
m,p-Xylene	U	0.81	2.0	μg/L	1	9/20/2019 03:32
Methyl tert-butyl ether	U	0.45	1.0	μg/L	1	9/20/2019 03:32
Methylene chloride	U	0.86	5.0	μg/L	1	9/20/2019 03:32
Naphthalene	U	0.77	5.0	μg/L	1	9/20/2019 03:32
n-Butylbenzene	U	0.34	1.0	μg/L	1	9/20/2019 03:32
n-Propylbenzene	U	0.48	1.0	μg/L	1	9/20/2019 03:32
o-Xylene	U	0.31	1.0	μg/L	1	9/20/2019 03:32
p-Isopropyltoluene	U	0.26	1.0	μg/L	1	9/20/2019 03:32
sec-Butylbenzene	U	0.30	1.0	μg/L	1	9/20/2019 03:32
Styrene	U	0.33	1.0	μg/L	1	9/20/2019 03:32
ert-Butyl alcohol	U	2.4	20	µg/L	1	9/20/2019 03:32
tert-Butylbenzene	U	0.39	1.0	μg/L	1	9/20/2019 03:32
Tetrachloroethene	U	0.39	1.0	μg/L	1	9/20/2019 03:32
Tetrahydrofuran	U	0.73	1.0	μg/L	1	9/20/2019 03:32
Toluene	U	0.45	1.0	µg/L	1	9/20/2019 03:32
rans-1,2-Dichloroethene	11	0.48	1.0	µg/L	1	9/20/2019 03:32
trans-1,3-Dichloropropene	U	0.38	1.0	µg/L	1	9/20/2019 03:32
rans-1,4-Dichloro-2-butene	U	0.58	2.0	μg/L	1	9/20/2019 03:32
Trichloroethene	U	0.43	1.0	μg/L	1	9/20/2019 03:32
Trichlorofluoromethane	U	0.52	1.0	μg/L	1	5.25.2510 00.02

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-14

Collection Date: 9/10/2019 09:45 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-14

Matrix: GROUNDWATER

analyses	Result Qua	l MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 03:32
Vinyl chloride	110	2.6	5.0	μg/L	5	9/20/2019 18:35
Surr: 1,2-Dichloroethane-d4	98.8		75-120	%REC	1	9/20/2019 03:32
Surr: 1,2-Dichloroethane-d4	98.0		75-120	%REC	5	9/20/2019 18:35
Surr: 4-Bromofluorobenzene	94.6		80-110	%REC	1	9/20/2019 03:32
Surr: 4-Bromofluorobenzene	96.2		80-110	%REC	5	9/20/2019 18:35
Surr: Dibromofluoromethane	97.4		85-115	%REC	1	9/20/2019 03:32
Surr: Dibromofluoromethane	97.2		85-115	%REC	5	9/20/2019 18:35
Surr: Toluene-d8	99.5		85-110	%REC	1	9/20/2019 03:32
Surr: Toluene-d8	97.2		85-110	%REC	5	9/20/2019 18:35

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-15

Collection Date: 9/10/2019 09:45 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-15

Matrix: GROUNDWATER

Analyses	Result Qual		MDL	Report MDL Limit		Dilution Factor	Date Analyzed	
VOLATILE ORGANIC COMPOUNDS		Meth	od: SW8260C				Analyst: BG	
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 22:44	
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 22:44	
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 22:44	
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 22:44	
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 22:44	
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 22:44	
1,1-Dichloroethene	1.6		0.40	1.0	μg/L	1	9/20/2019 22:44	
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 22:44	
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 22:44	
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 22:44	
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 22:44	
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 22:44	
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 22:44	
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 22:44	
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 22:44	
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 22:44	
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 22:44	
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 22:44	
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 22:44	
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 22:44	
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 22:44	
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 22:44	
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 22:44	
2-Butanone	U		0.52	5.0	μg/L	1	9/20/2019 22:44	
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 22:44	
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 22:44	
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 22:44	
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 22:44	
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 22:44	
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 22:44	
4-Methyl-2-pentanone	U		0.52	1.0	µg/L	1	9/20/2019 22:44	
Acetone	4.6	J	1.1	10	μg/L	1	9/20/2019 22:44	
Acrolein	U		0.38	1.0	µg/L	1	9/20/2019 22:44	
Acrylonitrile	U		0.50	1.0	µg/L	1	9/20/2019 22:44	
Benzene	U		0.46	1.0	µg/L	1	9/20/2019 22:44	
Benzyl chloride	U		0.34	1.0	μg/L	1	9/20/2019 22:44	
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 22:44	
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 22:44	

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-15

Collection Date: 9/10/2019 09:45 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-15

Matrix: GROUNDWATER

Analyses	Result		lt Qual MDL		Units	Dilution Factor	Date Analyzeo	
Bromodichloromethane	U		0.49	1.0	μg/L	1	9/20/2019 22:44	
Bromoform	U		0.56	1.0	μg/L	1	9/20/2019 22:44	
Bromomethane	U		0.90	1.0	μg/L	1	9/20/2019 22:44	
Carbon disulfide	U		0.49	1.0	μg/L	1	9/20/2019 22:44	
Carbon tetrachloride	U		0.40	1.0	μg/L	1	9/20/2019 22:44	
Chlorobenzene	U		0.40	1.0	μg/L	1	9/20/2019 22:44	
Chloroethane	U		0.68	1.0	μg/L	1	9/20/2019 22:44	
Chloroform	U		0.46	1.0	μg/L	1	9/20/2019 22:44	
Chloromethane	U		0.83	1.0	μg/L	1	9/20/2019 22:44	
cis-1,2-Dichloroethene	240		2.1	5.0	μg/L	5	9/20/2019 03:56	
cis-1,3-Dichloropropene	U		0.57	1.0	μg/L	1	9/20/2019 22:44	
Dibromochloromethane	U		0.40	1.0	μg/L	1	9/20/2019 22:44	
Dibromomethane	U		0.65	1.0	μg/L	1	9/20/2019 22:44	
Dichlorodifluoromethane	U		0.68	1.0	μg/L	1	9/20/2019 22:44	
Ethylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 22:44	
Hexachlorobutadiene	U		0.56	1.0	μg/L	1	9/20/2019 22:44	
Hexachloroethane	U		0.45	1.0	μg/L	1	9/20/2019 22:4	
Hexane	U		0.40	1.0	μg/L	1	9/20/2019 22:44	
lodomethane	U		2.0	5.0	μg/L	1	9/20/2019 22:44	
Isopropylbenzene	U		0.35	1.0	μg/L	1	9/20/2019 22:44	
m,p-Xylene	U		0.81	2.0	μg/L	1	9/20/2019 22:44	
Methyl tert-butyl ether	U		0.45	1.0	μg/L	1	9/20/2019 22:44	
Methylene chloride	U		0.86	5.0	μg/L	1	9/20/2019 22:44	
Naphthalene	U		0.77	5.0	µg/L	1	9/20/2019 22:44	
n-Butylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 22:44	
n-Propylbenzene	U		0.48	1.0	μg/L	1	9/20/2019 22:44	
o-Xylene	U		0.31	1.0	µg/L	1	9/20/2019 22:44	
p-Isopropyltoluene	U		0.26	1.0	μg/L	1	9/20/2019 22:44	
sec-Butylbenzene	U		0.30	1.0	μg/L	1	9/20/2019 22:44	
Styrene	U		0.33	1.0	μg/L	1	9/20/2019 22:44	
tert-Butyl alcohol	U		2.4	20	μg/L	1	9/20/2019 22:44	
tert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 22:44	
Tetrachloroethene	U		0.39	1.0	μg/L	1	9/20/2019 22:44	
Tetrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 22:44	
Toluene	U		0.45	1.0	μg/L	1	9/20/2019 22:44	
trans-1,2-Dichloroethene	11		0.48	1.0	μg/L	1	9/20/2019 22:44	
trans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 22:44	
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	9/20/2019 22:44	
Trichloroethene	2.0		0.43	1.0	μg/L	1	9/20/2019 22:44	
Trichlorofluoromethane	U		0.52	1.0	μg/L	1	9/20/2019 22:44	

Note:

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

COL-GW-15

Collection Date: 9/10/2019 09:45 AM

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-15

Matrix: GROUNDWATER

Analyses	Result Q	ual MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 22:44
Vinyl chloride	100	2.6	5.0	μg/L	5	9/20/2019 03:56
Surr: 1,2-Dichloroethane-d4	98.0		75-120	%REC	5	9/20/2019 03:56
Surr: 1,2-Dichloroethane-d4	101		75-120	%REC	1	9/20/2019 22:44
Surr: 4-Bromofluorobenzene	93.8		80-110	%REC	5	9/20/2019 03:56
Surr: 4-Bromofluorobenzene	93.3		80-110	%REC	1	9/20/2019 22:44
Surr: Dibromofluoromethane	96.6		85-115	%REC	5	9/20/2019 03:56
Surr: Dibromofluoromethane	95.2		85-115	%REC	1	9/20/2019 22:44
Surr: Toluene-d8	99.4		85-110	%REC	5	9/20/2019 03:56
Surr: Toluene-d8	98.1		85-110	%REC	1	9/20/2019 22:44

Client: BB&E, Inc.

Project: SSW Collis 2019 LTM Task 3

Sample ID: Trip Blank **Collection Date:** 9/9/2019

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-16 **Matrix:** WATER

Analyses	Result Qual		MDL	Report L Limit Units		Dilution Factor	Date Analyzec	
VOLATILE ORGANIC COMPOUNDS		Meth		Analyst: MF				
1,1,1,2-Tetrachloroethane	U		0.38	1.0	μg/L	1	9/20/2019 06:14	
1,1,1-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 06:14	
1,1,2,2-Tetrachloroethane	U		0.40	1.0	μg/L	1	9/20/2019 06:14	
1,1,2-Trichloroethane	U		0.46	1.0	μg/L	1	9/20/2019 06:14	
1,1,2-Trichlorotrifluoroethane	U		0.52	1.0	μg/L	1	9/20/2019 06:14	
1,1-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 06:14	
1,1-Dichloroethene	U		0.40	1.0	μg/L	1	9/20/2019 06:14	
1,1-Dichloropropene	U		0.37	1.0	μg/L	1	9/20/2019 06:14	
1,2,3-Trichlorobenzene	U		0.42	1.0	μg/L	1	9/20/2019 06:14	
1,2,3-Trichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 06:14	
1,2,4-Trichlorobenzene	U		0.45	1.0	μg/L	1	9/20/2019 06:1	
1,2,4-Trimethylbenzene	U		0.45	1.0	μg/L	1	9/20/2019 06:1	
1,2-Dibromo-3-chloropropane	U		0.43	1.0	μg/L	1	9/20/2019 06:1	
1,2-Dibromoethane	U		0.41	1.0	μg/L	1	9/20/2019 06:1	
1,2-Dichlorobenzene	U		0.32	1.0	μg/L	1	9/20/2019 06:1	
1,2-Dichloroethane	U		0.44	1.0	μg/L	1	9/20/2019 06:1	
1,2-Dichloropropane	U		0.48	1.0	μg/L	1	9/20/2019 06:1	
1,3,5-Trichlorobenzene	U		0.31	1.0	μg/L	1	9/20/2019 06:1	
1,3,5-Trimethylbenzene	U		0.65	1.0	μg/L	1	9/20/2019 06:1	
1,3-Dichlorobenzene	U		0.33	1.0	μg/L	1	9/20/2019 06:1	
1,3-Dichloropropane	U		0.40	1.0	μg/L	1	9/20/2019 06:1	
1,4-Dichlorobenzene	U		0.35	1.0	μg/L	1	9/20/2019 06:14	
2,2-Dichloropropane	U		0.52	1.0	μg/L	1	9/20/2019 06:14	
2-Butanone	U		0.52	5.0	μg/L	1	9/20/2019 06:14	
2-Chloroethyl vinyl ether	U		0.82	1.0	μg/L	1	9/20/2019 06:14	
2-Chlorotoluene	U		0.36	1.0	μg/L	1	9/20/2019 06:14	
2-Hexanone	U		0.59	5.0	μg/L	1	9/20/2019 06:14	
2-Methylnaphthalene	U		0.66	5.0	μg/L	1	9/20/2019 06:14	
4-Chlorotoluene	U		0.31	1.0	μg/L	1	9/20/2019 06:14	
4-Isopropyltoluene	U		0.10	1.0	μg/L	1	9/20/2019 06:14	
4-Methyl-2-pentanone	U		0.52	1.0	μg/L	1	9/20/2019 06:1	
Acetone	U		1.1	10	μg/L	1	9/20/2019 06:14	
Acrolein	U		0.38	1.0	μg/L	1	9/20/2019 06:14	
Acrylonitrile	U		0.50	1.0	μg/L	1	9/20/2019 06:14	
Benzene	U		0.46	1.0	μg/L	1	9/20/2019 06:14	
Benzyl chloride	U		0.34	1.0	μg/L	1	9/20/2019 06:14	
Bromobenzene	U		0.38	1.0	μg/L	1	9/20/2019 06:14	
Bromochloromethane	U		0.45	1.0	μg/L	1	9/20/2019 06:14	

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

Trip Blank

Collection Date: 9/9/2019

Date: 25-Sep-19

Work Order: 19090657

Lab ID: 19090657-16

Matrix: WATER

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Bromodichloromethane	U		0.49	1.0	μg/L	1	9/20/2019 06:14
Bromoform	U		0.56	1.0	μg/L	1	9/20/2019 06:14
Bromomethane	U		0.90	1.0	μg/L	1	9/20/2019 06:14
Carbon disulfide	U		0.49	1.0	μg/L	1	9/20/2019 06:14
Carbon tetrachloride	U		0.40	1.0	μg/L	1	9/20/2019 06:14
Chlorobenzene	U		0.40	1.0	μg/L	1	9/20/2019 06:14
Chloroethane	U		0.68	1.0	μg/L	1	9/20/2019 06:14
Chloroform	0.59	J	0.46	1.0	μg/L	1	9/20/2019 06:14
Chloromethane	U		0.83	1.0	μg/L	1	9/20/2019 06:14
cis-1,2-Dichloroethene	U		0.42	1.0	μg/L	1	9/20/2019 06:14
cis-1,3-Dichloropropene	U		0.57	1.0	μg/L	1	9/20/2019 06:14
Dibromochloromethane	U		0.40	1.0	μg/L	1	9/20/2019 06:14
Dibromomethane	U		0.65	1.0	μg/L	1	9/20/2019 06:14
Dichlorodifluoromethane	U		0.68	1.0	μg/L	1	9/20/2019 06:14
Ethylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 06:14
Hexachlorobutadiene	U		0.56	1.0	μg/L	1	9/20/2019 06:14
Hexachloroethane	U		0.45	1.0	μg/L	1	9/20/2019 06:14
Hexane	U		0.40	1.0	μg/L	1	9/20/2019 06:14
lodomethane	U		2.0	5.0	μg/L	1	9/20/2019 06:14
Isopropylbenzene	U		0.35	1.0	μg/L	1	9/20/2019 06:14
m,p-Xylene	U		0.81	2.0	μg/L	1	9/20/2019 06:14
Methyl tert-butyl ether	U		0.45	1.0	μg/L	1	9/20/2019 06:14
Methylene chloride	U		0.86	5.0	μg/L	1	9/20/2019 06:14
Naphthalene	U		0.77	5.0	μg/L	1	9/20/2019 06:14
n-Butylbenzene	U		0.34	1.0	μg/L	1	9/20/2019 06:14
n-Propylbenzene	U		0.48	1.0	μg/L	1	9/20/2019 06:14
o-Xylene	U		0.31	1.0	μg/L	1	9/20/2019 06:14
p-Isopropyltoluene	U		0.26	1.0	μg/L	1	9/20/2019 06:14
sec-Butylbenzene	U		0.30	1.0	μg/L	1	9/20/2019 06:14
Styrene	U		0.33	1.0	μg/L	1	9/20/2019 06:14
tert-Butyl alcohol	U		2.4	20	μg/L	1	9/20/2019 06:14
tert-Butylbenzene	U		0.39	1.0	μg/L	1	9/20/2019 06:14
Tetrachloroethene	U		0.39	1.0	µg/L	1	9/20/2019 06:14
Tetrahydrofuran	U		0.73	1.0	μg/L	1	9/20/2019 06:14
Toluene	Ú		0.45	1.0	µg/L	1	9/20/2019 06:14
trans-1,2-Dichloroethene	U		0.48	1.0	µg/L	1	9/20/2019 06:14
trans-1,3-Dichloropropene	U		0.38	1.0	μg/L	1	9/20/2019 06:14
trans-1,4-Dichloro-2-butene	U		0.58	2.0	μg/L	1	9/20/2019 06:14
Trichloroethene	U		0.43	1.0	μg/L	1	9/20/2019 06:14
Trichlorofluoromethane	Ü		0.52	1.0	μg/L	1	9/20/2019 06:14

Note:

Date: 25-Sep-19

Client:

BB&E, Inc.

Project:

SSW Collis 2019 LTM Task 3

Sample ID:

Trip Blank

Collection Date: 9/9/2019

Work Order: 19090657

Lab ID: 19090657-16

Matrix: WATER

Analyses	Result Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Vinyl acetate	U	0.83	5.0	μg/L	1	9/20/2019 06:14
Vinyl chloride	U	0.53	1.0	μg/L	1	9/20/2019 06:14
Surr: 1,2-Dichloroethane-d4	97.6		75-120	%REC	1	9/20/2019 06:14
Surr: 4-Bromofluorobenzene	97.2		80-110	%REC	1	9/20/2019 06:14
Surr: Dibromofluoromethane	92.0		85-115	%REC	1	9/20/2019 06:14
Surr: Toluene-d8	101		85-110	%REC	1	9/20/2019 06:14

Date: 25-Sep-19

Client:

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Instrument ID	GC10		Metho	od: RSK-17	5						
Sample ID: MBLK-1	190923-R271	192			Units: µg/	L	Analys	sis Date: 9	/23/2019	02:09 PI	
	Run II	D: GC10 _	190923A		SeqNo: 593	86732	Prep Date:		DF: 1		
	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
	U	5.0									
	U										
	U	5.0									
Sample ID: LCS-19	0923-R27119	2			Units: µg/	L	Analys	sis Date: 9	/23/2019	02:07 PI	
	Run I): GC10 _	190923A	5			Prep Date:	-	DF: 1		
	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
	33.82	5.0	36 1	0	93.7	75-125	0				
	33.03						-				
	19.53	5.0	19.2								
Sample ID: 1909058	88-50H MS				Units: µg/	L	Analys	sis Date: 9	/23/2019 (03:13 PI	
	Run ID	: GC10_	190923A	8			Prep Date:		DF: 1		
	Result	POI	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	% PPD	RPD Limit	Qual	
				0		75 405				Quai	
							_				
	51.14	5.0	19.2	38.88		75-125 75-125				S	
Sample ID: 1909065	7-05E MS				Units: ua/l	L	Analys	is Date: 9/	23/2019 (13·17 DA	
5	Run ID	: GC10_	190923A	s			Prep Date:	o Date. O	DF: 1		
	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
	29.68	5.0	36.1	1.05	79.3	75-125	0				
	28.28	5.0	33.7	0		75-125					
	27.78	5.0	19.2	12.07	81.8	75-125					
Sample ID: 1909058	8-50H MSD				Units: µg/L	_	Analys	is Date: 9/	23/2019 0	3:15 PM	
	Run ID	: GC10_1	190923A	s	SeqNo: 593	6758	Prep Date:		DF: 1		
	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	0/ DDD	RPD Limit	Ougl	
	Nesult	FUL	SEK Val		70KEU		, aluc	%RPD		Qual	
	00.01	tot sak									
	30.81 30.2	5.0 5.0	36.1 33.7	0	85.3 89.6	75-125 75-125	31.64 31.37	2.66 3.8	20 20		
	Sample ID: MBLK-1 Sample ID: LCS-19 Sample ID: 1909058	Result U U U U Sample ID: LCS-190923-R27119 Run ID Result 33.82 33.03 19.53 Sample ID: 19090588-50H MS Run ID Result 31.64 31.37 51.14 Sample ID: 19090657-05E MS Run ID Result 29.68 28.28 27.78 Sample ID: 19090588-50H MSD	Result PQL	Sample ID: MBLK-190923-R271192 Result PQL SPK Val U 5.0 U U 5.0 U U 5.0 U U 5.0 U Eaun ID: GC10_190923A Result PQL SPK Val 33.82 5.0 36.1 33.03 5.0 33.7 19.53 5.0 19.2 Sample ID: 19090588-50H MS Result PQL SPK Val 31.64 5.0 36.1 31.37 5.0 33.7 51.14 5.0 19.2 Sample ID: 19090657-05E MS Result PQL SPK Val 29.68 5.0 36.1 29.68 5.0 33.7 29.68 5.0 33.7 27.78 5.0 19.2	Sample ID: MBLK-190923-R271192 Result PQL SPK Val SPK Ref Value U 5.0 U 5.0 U U 5.0 U 5.0 U Sample ID: LCS-190923-R271192 Run ID: GC10_190923A SPK Ref Value Result PQL SPK Val SPK Ref Value 33.82 5.0 36.1 0 33.03 5.0 33.7 0 19.53 5.0 19.2 0 Sample ID: 19090588-50H MS Result PQL SPK Val SPK Ref Value Sample ID: 19090657-05E MS Result PQL SPK Val SPK Ref Value Result PQL SPK Val SPK Ref Value SPK Ref Value SPK Ref Value Sample ID: 19090657-05E MS Result PQL SPK Val SPK Ref Value 29.68 5.0 36.1 1.05 28.28 5.0 33.7 0 27.78 5.0 19.2 12.07 Sample ID: 19090588-50H MSD <td ro<="" td=""><td>Sample ID: MBLK-190923-R271192 Run ID: GC10_190923A SeqNo: 593 SeqNo: 593 SPK Ref Value Result</td><td>Sample ID: MBLK-190923-R271192 Units: μg/L Result PQL SPK Val SPK Ref Value Val</td><td> Sample ID: MBLK-190923-R271192</td><td>Sample ID: MBLK-190923-R271192 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936757 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Val Val Val Val Val Val Val Val Val</td><td> Sample ID: MBLK-190923-R271192</td></td>	<td>Sample ID: MBLK-190923-R271192 Run ID: GC10_190923A SeqNo: 593 SeqNo: 593 SPK Ref Value Result</td> <td>Sample ID: MBLK-190923-R271192 Units: μg/L Result PQL SPK Val SPK Ref Value Val</td> <td> Sample ID: MBLK-190923-R271192</td> <td>Sample ID: MBLK-190923-R271192 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936757 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Val Val Val Val Val Val Val Val Val</td> <td> Sample ID: MBLK-190923-R271192</td>	Sample ID: MBLK-190923-R271192 Run ID: GC10_190923A SeqNo: 593 SeqNo: 593 SPK Ref Value Result	Sample ID: MBLK-190923-R271192 Units: μg/L Result PQL SPK Val SPK Ref Value Val	Sample ID: MBLK-190923-R271192	Sample ID: MBLK-190923-R271192 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936732 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936731 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936757 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val Value SeqNo: 5936759 Prep Date: 9 Result PQL SPK Val	Sample ID: MBLK-190923-R271192

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

QC BATCH REPORT

Batch ID: R271192	atch ID: R271192 Instrument ID GC10			Metho	d: RSK-175						
MSD	Sample ID: 190906	57-05E MSD			ı	Units: µg/l	L	Analys	is Date: 9/	23/2019 0	3:19 PM
Client ID: COL-GW-0	lient ID: COL-GW-05 Run ID			190923A	SeqNo: 5936760			Prep Date:	DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Ethane		29.27	5.0	36.1	1.05	78.2	75-125	29.68	1.39	20	
Ethene		28.46	5.0	33.7	0	84.5	75-125	28.28	0.634	20	
Methane		24.45	5.0	19.2	12.07	64.5	75-125	27.78	12.8	20	S
The following sampl	es were analyzed ir	this batch:	19	9090657-	19090 06F	0657-	19 12	090657-			

19090657-

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: 142724	Instrument ID ICPMS4		Metho	d: SW60 2	20A		(Dissolve	e)			
MBLK	Sample ID: MBLK-142724-1427	24			U	Inits: mg	/L	Analys	sis Date: 9	9/20/2019 (04:35 PN
Client ID:	Run	ID: ICPMS	4_190920A		Sec	qNo: 593	5021	Prep Date: 9/2		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Iron	U	0.080									
Manganese	U	0.0050									
LCS	Sample ID: LCS-142724-142724	1			U	nits: mg/	/L	Analys	sis Date: 9	9/20/2019 (04:37 PM
Client ID:	Run I	D: ICPMS	4_190920A			No: 593		Prep Date: 9/20		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Iron	9.76	0.080	10		0	97.6	80-120	0			
Manganese	0.09586	0.0050	0.1		0	95.9	80-120	0			
MS	Sample ID: 19090657-05BMS				U	nits: mg/	'L	Analys	is Date: 9	0/24/2019 (6:56 PM
Client ID: COL-GW-0	05 Run I	D: ICPMS	3_190924A			No: 594 :		Prep Date: 9/20		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Iron	10.1	0.080	10	0.270)3	98.3	75-125	0			
Manganese	0.1451	0.0050	0.1	0.0478	36	97.3	75-125	0			
MSD	Sample ID: 19090657-05BMSD				U	nits: mg/	L	Analys	is Date: 9	/24/2019 0	6:58 PM
Client ID: COL-GW-0	95 Run I	D: ICPMS	3_190924A		Sec	No: 594 :	3245	Prep Date: 9/20		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Iron	10.18	0.080	10	0.270)3	99.1	75-125	10.1	0.751	20	
Manganese	0.1455	0.0050	0.1	0.0478		97.6	75-125	0.1451	0.233		
The following sampl	es were analyzed in this batch:	05	090657-	19 06	0906 B	357-	190 121	090657- B			

BB&E, Inc.

Work Order:

19090657

Batch ID: R270769A	Instrument ID VN	1 S9		Metho	d: SW82 6	60B						
MBLK	Sample ID: VBLKW1-1	190917-R27	70769A			ι	Jnits: µg/L	-	Analy	sis Date: 9/	17/2019 0	4:25 PM
Client ID:		Run ID	: VMS9_	190917A		SeqNo: 5925224		Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1.4-Dioxane		U	1.0									
Surr: Toluene-d8		10.74	0	10		0	107	74-124)		
LCS	Sample ID: VLCSW1-1	190917-R27	70769A			ι	Jnits: µg/L	_	Analy	sis Date: 9/	17/2019 0	3:38 PM
Client ID:		Run ID	: VMS9_	190917A		Se	qNo: 592	5222	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dioxane		38.94	1.0	40		0	97.4	70-130	()		
Surr: Toluene-d8		9.83	0	10		0	98.3	74-124	()		
MS	Sample ID: 19090657-	05A MS				ι	Jnits: µg/L	_	Analy	sis Date: 9/	17/2019 1	0:44 PM
Client ID: COL-GW-0)5	Run ID	: VMS9_	190917A		Se	qNo: 592	5258	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dioxane		42.96	1.0	40		0	107	70-130	()		
Surr: Toluene-d8		10.38	0	10		0	104	74-124	()		
MSD	Sample ID: 19090657-	05A MSD				ι	Jnits: µg/L	_	Analy	sis Date: 9/	17/2019 1	1:00 PM
Client ID: COL-GW-0	05	Run ID	: VMS9_	190917A		Se	qNo: 592	5260	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,4-Dioxane		43.28	1.0	40		0	108	70-130	42.96	0.742	30	
Surr: Toluene-d8		10.7	0	10		0	107	74-124	10.38	3.04	30	

The following samples were analyzed in this batch:

19090657-01A

19090657-05A

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270847A	Instrument ID VMS9		Metho	od: SW82 6	60B							
MBLK	Sample ID: VBLKW1-190918-R2	70847A			ı	Jnits: µg/I	_	Analy	sis Date:	9/18/201	9 10:54 AM	
Client ID:	Run II	D: VMS9 _	190918A		Se	eqNo: 592	7679	Prep Date:		DF:	1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RP[RPD Limit	Qual	
1,4-Dioxane	U	1.0										
Surr: Toluene-d8	10.69	0	10		0	107	74-124	-	0			
LCS	Sample ID: VLCSW1-190918-R2	70847A			ι	Jnits: µg/L		Analy	sis Date:	9/18/201	9 10:07 AN	
Client ID:	Run II	D: VMS9 _	190918A		Se	qNo: 592	7678	Prep Date:		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPE	RPD Limit	Qual	
1,4-Dioxane	39.54	1.0	40		0	98.8	70-130		0			
Surr: Toluene-d8	10.71	0	10		0	107	74-124		0			
MS	Sample ID: 19090788-02A MS				ι	Jnits: µg/L		Analy	sis Date:	9/18/2019	9 01:59 PN	
Client ID:	Run IE	D: VMS9 _	190918A		Se	qNo: 592	7689	Prep Date:		DF:		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPC	RPD Limit	Qual	
1,4-Dioxane	44.38	1.0	40		0	111	70-130		0			
Surr: Toluene-d8	11.86	0	10		0	119	74-124		0			
DUP	Sample ID: 19090788-01A DUP				ι	Jnits: µg/L		Analy	sis Date:	9/18/2019	01:44 PN	
Client ID:	Run ID	D: VMS9_	190918A			qNo: 592 7		Prep Date:		DF:		
				SPK Ref Value		373777000000000000000000000000000000000	Control	RPD Ref		RPD		
Analyte	Result	PQL	SPK Val	value		%REC	Limit	Value	%RPD	Limit	Qual	
1,4-Dioxane	U 10.50	1.0	0		0	0		(0 30		
Surr: Toluene-d8	10.59	0	10		0	106	74-124	10.56	0.28	34 30)	
The following sample	es were analyzed in this batch:	19 06	9090657- SA	19 12		657-	190 137	090657- A				

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270981A Instrum	nent ID VMS6		Metho	d: SW826	60C					
	/BLKW2-190919-R2	70981A			Units: µg/L	-	Analys	sis Date:	9/20/2019 0	1:54 AN
Client ID:	Run IE	: VMS6_	190919A		SeqNo: 5932	2147	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	U	1.0								
1,1,1-Trichloroethane	U	1.0								
1,1,2,2-Tetrachloroethane	U	1.0								
1,1,2-Trichloroethane	U	1.0								
1,1,2-Trichlorotrifluoroethane	U	1.0								
1,1-Dichloroethane	U	1.0								
1,1-Dichloroethene	U	1.0								
1,1-Dichloropropene	U	1.0								
1,2,3-Trichlorobenzene	0.52	1.0								1
1,2,3-Trichloropropane	U	1.0								J
1,2,4-Trichlorobenzene	U	1.0								
1,2,4-Trimethylbenzene	Ü	1.0								
1,2-Dibromo-3-chloropropane	U	1.0								
1,2-Dibromoethane	U	1.0								
1,2-Dichlorobenzene	U	1.0								
1,2-Dichloroethane	U	1.0								
1,2-Dichloropropane	Ü	1.0								
1,3,5-Trichlorobenzene	U	1.0								
1,3,5-Trimethylbenzene	U	1.0								
1,3-Dichlorobenzene	U	1.0								
1,3-Dichloropropane	U	1.0								
1,4-Dichlorobenzene	Ü	1.0								
2,2-Dichloropropane	U	1.0								
2-Butanone	U	5.0								
2-Chloroethyl vinyl ether	U	1.0								
2-Chlorotoluene	U	1.0								
2-Hexanone	U	5.0								
2-Methylnaphthalene	U	5.0								
4-Chlorotoluene	U	1.0								
4-Isopropyltoluene	U	1.0								
4-Methyl-2-pentanone	U	1.0								
Acetone	U	1.0								
Acrolein	U	1.0								
Acrylonitrile	U	1.0								
Benzene	U	1.0								
Benzyl chloride	U	1.0								
Bromobenzene	U	1.0								
Bromochloromethane	U	1.0								
Bromodichloromethane	U	1.0								
Bromoform	U									
Bromomethane	U	1.0								
Carbon disulfide	0.5	1.0 1.0								J

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270981A	Instrument ID VMS6		Method:	SW8260C				
Carbon tetrachloride	U	1.0						
Chlorobenzene	U	1.0						
Chloroethane	U	1.0						
Chloroform	U	1.0						
Chloromethane	U	1.0						
cis-1,2-Dichloroethene	U	1.0						
cis-1,3-Dichloropropene	U	1.0						
Dibromochloromethane	U	1.0						
Dibromomethane	U	1.0						
Dichlorodifluoromethane	U	1.0						
Ethylbenzene	U	1.0						
Hexachlorobutadiene	0.79	1.0						J
Hexachloroethane	U	1.0						
Hexane	U	1.0						
lodomethane	U	5.0						
Isopropylbenzene	U	1.0						
m,p-Xylene	U	2.0						
Methyl tert-butyl ether	U	1.0						
Methylene chloride	U	5.0						
Naphthalene	U	5.0						
n-Butylbenzene	U	1.0						
n-Propylbenzene	U	1.0						
o-Xylene	U	1.0						
o-Isopropyltoluene	U	1.0						
sec-Butylbenzene	U	1.0						
Styrene	U	1.0						
ert-Butyl alcohol	U	20						
ert-Butylbenzene	U	1.0						
Tetrachloroethene	U	1.0						
Tetrahydrofuran	U	1.0						
Toluene	U	1.0						
rans-1,2-Dichloroethene	U	1.0						
rans-1,3-Dichloropropene	U	1.0						
rans-1,4-Dichloro-2-butene	U	2.0						
Trichloroethene	U	1.0						
Trichlorofluoromethane	U	1.0						
/inyl acetate	U	5.0						
/inyl chloride	U	1.0						
Surr: 1,2-Dichloroethane-o		0	20	0	99.7	75-120	0	
Surr: 4-Bromofluorobenzer		0	20	0	97.2	80-110	0	
Surr: Dibromofluoromethal		0	20	0	93	85-115	0	
Surr: Toluene-d8	19.69	0	20	0	98.4	85-110	0	

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270981A Ins	trument ID VMS6		Metho	d: SW826	0C						
LCS Sample I	D: VLCSW3-190919-R27	0981A			ι	Jnits: µg/L	_	Analys	is Date: 9	/20/2019 (01:05 AN
Client ID:	Run ID	: VMS6_	190919A		Se	qNo: 593	2146	Prep Date:		DF: 1	
				SPK Ref			Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	18.18	1.0	20		0	90.9	73-114	0			
1,1,1-Trichloroethane	17.73	1.0	20		0	88.6	75-130	0			
1,1,2,2-Tetrachloroethane	18.99	1.0	20		0	95	75-130	0			
1,1,2-Trichloroethane	17.61	1.0	20		0	88	75-125	0			
1,1-Dichloroethane	19.23	1.0	20		0	96.2	68-142	0			
1,1-Dichloroethene	20.49	1.0	20		0	102	70-145	0			
1,1-Dichloropropene	17.58	1.0	20		0	87.9	75-135	0			
1,2,3-Trichlorobenzene	19.55	1.0	20		0	97.8	70-140	0			
1,2,3-Trichloropropane	18.09	1.0	20		0	90.4	75-125	0			
1,2,4-Trichlorobenzene	18.83	1.0	20		0	94.2	70-135	0			
1,2,4-Trimethylbenzene	17.39	1.0	20		0	87	75-130	0			
1,2-Dibromo-3-chloropropane	17.47	1.0	20		0	87.4	60-130	0			
1,2-Dibromoethane	19.82	1.0	20		0	99.1	67-155	0			
1,2-Dichlorobenzene	18.89	1.0	20		0	94.4	70-130	0			
1,2-Dichloroethane	17.94	1.0	20		0	89.7	78-125	0			
1,2-Dichloropropane	17.97	1.0	20		0	89.8	75-125	0			
1,3,5-Trimethylbenzene	17.38	1.0	20		0	86.9	75-130	0			
1,3-Dichlorobenzene	19.12	1.0	20		0	95.6	75-130	0			
1,3-Dichloropropane	19.02	1.0	20		0	95.1	75-125	0			
1,4-Dichlorobenzene	18.69	1.0	20		0	93.4	75-130	0			
2,2-Dichloropropane	16.64	1.0	20		0	83.2	43-150	0			
2-Butanone	19.02	5.0	20		0	95.1	55-150	0			
2-Chlorotoluene	18.57	1.0	20		0	92.8	76-117	0			
2-Hexanone	17.13	5.0	20		0	85.6	60-135	0			
4-Chlorotoluene	18.42	1.0	20		0	92.1	80-125	0			
4-Isopropyltoluene	17.83	1.0	20		0	89.2	61-164	0			
4-Methyl-2-pentanone	20.25	1.0	20		0	101	77-178	0			
Acetone	17.21	10	20		0	86	60-160	0			
Acrylonitrile	16.75	1.0	20		0	83.8	60-140	0			
Benzene	17.88	1.0	20		0	89.4	70-130	0			
Bromobenzene	18.47	1.0	20		0	92.4	80-125	0			
Bromochloromethane	18.3	1.0	20		0	91.5	72-141	0			
Bromodichloromethane	18.97	1.0	20		0	94.8	75-125				
Bromoform	17.04	1.0	20		0	85.2	60-125				
Bromomethane	31.6	1.0	20		0	158	30-185				
Carbon disulfide	18.78	1.0	20		0	93.9	60-165				
Carbon tetrachloride	18.55	1.0	20		0	92.8	65-140	0			
Chlorobenzene	18.94	1.0	20		0	94.7	80-120	0			
Chlorobenzene	18.18	1.0	20		0	90.9	31-172				
	18.31	1.0	20		0	91.6	66-135				
Chloroform	23.23		20		0	116	46-148	0			
Chloromethane		1.0									
cis-1,2-Dichloroethene	19.5	1.0	20		0	97.5	75-134	0			

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270981A	Instrument ID VMS6		Method:	SW8260C			
cis-1,3-Dichloropropene	18.29	1.0	20	0	91.4	70-130	0
Dibromochloromethane	17.84	1.0	20	0	89.2	60-115	0
Dibromomethane	18.96	1.0	20	0	94.8	79-126	0
Dichlorodifluoromethane	23.07	1.0	20	0	115	20-120	0
Ethylbenzene	18.01	1.0	20	0	90	76-123	0
Hexachlorobutadiene	20.12	1.0	20	0	101	70-155	0
Hexachloroethane	15.59	1.0	20	0	78	50-124	0
odomethane	19.46	5.0	20	0	97.3	60-160	0
sopropylbenzene	17.88	1.0	20	0	89.4	80-127	0
m,p-Xylene	35.87	2.0	40	0	89.7	75-130	0
Methyl tert-butyl ether	17.76	1.0	20	0	88.8	68-129	0
Methylene chloride	19.78	5.0	20	0	98.9	72-125	0
Naphthalene	18.8	5.0	20	0	94	55-160	0
n-Butylbenzene	17.47	1.0	20	0	87.4	75-145	0
n-Propylbenzene	18.31	1.0	20	0	91.6	76-116	0
o-Xylene	18.56	1.0	20	0	92.8	76-127	0
o-Isopropyltoluene	17.83	1.0	20	0	89.2	61-164	0
sec-Butylbenzene	18.02	1.0	20	0	90.1	80-134	0
Styrene	18.5	1.0	20	0	92.5	83-137	0
ert-Butyl alcohol	86.83	20	100	0	86.8	70-130	0
ert-Butylbenzene	17.99	1.0	20	0	90	70-130	0
Tetrachloroethene	19.01	1.0	20	0	95	68-166	0
Tetrahydrofuran	16.93	1.0	20	0	84.6	54-139	0
Toluene	18.02	1.0	20	0	90.1	76-125	0
rans-1,2-Dichloroethene	19.52	1.0	20	0	97.6	80-140	0
rans-1,3-Dichloropropene	17.83	1.0	20	0	89.2	56-132	0
trans-1,4-Dichloro-2-butene	11.11	2.0	20	0	55.6	46-118	0
Trichloroethene	18.26	1.0	20	0	91.3	77-125	0
Trichlorofluoromethane	16.91	1.0	20	0	84.6	60-140	0
Vinyl chloride	19.65	1.0	20	0	98.2	50-136	0
Surr: 1,2-Dichloroethane-	-d4 19.31	0	20	0	96.6	75-120	0
Surr: 4-Bromofluorobenze	ene 19.97	0	20	0	99.8	80-110	0
Surr: Dibromofluorometha	ane 19.76	0	20	0	98.8	85-115	0
Surr: Toluene-d8	20.24	0	20	0	101	85-110	0

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270981A	Instrument ID VMS6		Method	: SW82600	;					
MS Sam	ple ID: 19090657-12A MS				Units: µg/l		Analys	sis Date: 9	/20/2019	10:29 AM
Client ID: COL-GW-12	Run ID	: VMS6_	190919A	s	eqNo: 593	2154	Prep Date:		DF: 5	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	86.95	5.0	100	0	87	73-114	C)		
1,1,1-Trichloroethane	91.7	5.0	100	0	91.7	75-130	C)		
1,1,2,2-Tetrachloroethane	89.8	5.0	100	0	89.8	75-130	C)		
1,1,2-Trichloroethane	88	5.0	100	0	88	75-125	C)		
1,1-Dichloroethane	96.75	5.0	100	0	96.8	68-142	C)		
1,1-Dichloroethene	115	5.0	100	2.7	112	70-145	C)		
1,1-Dichloropropene	99.45	5.0	100	0	99.4	75-135	C)		
1,2,3-Trichlorobenzene	91.15	5.0	100	0	91.2	70-140	C)		
1,2,3-Trichloropropane	86.15	5.0	100	0	86.2	75-125	C)		
1,2,4-Trichlorobenzene	90.55	5.0	100	1.2	89.4	70-135	c)		
1,2,4-Trimethylbenzene	89	5.0	100	0	89	75-130	C			
1,2-Dibromo-3-chloropropar	ne 81.25	5.0	100	0	81.2	60-130	C			
1,2-Dibromoethane	93.65	5.0	100	0	93.6	67-155	C			
1,2-Dichlorobenzene	93.8	5.0	100	0	93.8	70-130	C			
1,2-Dichloroethane	87.8	5.0	100	0	87.8	78-125	C			
1,2-Dichloropropane	94.1	5.0	100	0	94.1	75-125	C			
1,3,5-Trimethylbenzene	89.7	5.0	100	0	89.7	75-130	C			
1,3-Dichlorobenzene	95.6	5.0	100	0	95.6	75-130	C			
1,3-Dichloropropane	91.05	5.0	100	0	91	75-125	C			
1,4-Dichlorobenzene	94.3	5.0	100	0	94.3	75-130	C			
2,2-Dichloropropane	65.35	5.0	100	0	65.4	43-150	0			
2-Butanone	83.6	25	100	0	83.6	55-150	C			
2-Chlorotoluene	93.7	5.0	100	0	93.7	76-117	C			
2-Hexanone	83.9	25	100	0	83.9	60-135	C			
4-Chlorotoluene	93.05	5.0	100	0	93	80-125	C			
4-Isopropyltoluene	95.55	5.0	100	0	95.6	61-164	C			
4-Methyl-2-pentanone	101.6	5.0	100	0	102	77-178	0			
Acetone	94.1	50	100	8.2	85.9	60-160	0			
Acrylonitrile	80.1	5.0	100	0.2	80.1	60-140	0			
Benzene	95.85	5.0	100	0	95.8	70-130	0			
Bromobenzene	88.7	5.0	100	0	88.7	80-125	0			
Bromochloromethane	86.2	5.0	100	0	86.2	72-141	0			
Bromodichloromethane	90.35	5.0	100	0	90.4	75-141	0			
Bromoform	72.25	5.0	100	0	72.2	60-125	0			
Bromomethane	98.2	5.0	100	0	98.2	30-125	0			
Carbon disulfide	94.3	5.0	100	1.5	90.2	60-165	0			
Carbon disulide Carbon tetrachloride	103.2	5.0	100	0	103	65-140	0			
Carbon tetrachionide Chlorobenzene	92.4	5.0	100	0	92.4		0			
Chloroethane	101.2					80-120				
	92.05	5.0	100	0	101	31-172	0			
Chloroform		5.0	100	0	92	66-135	0			
Chloromethane	108.6	5.0	100	2.45	106	46-148	0			
cis-1,2-Dichloroethene	358.6	5.0	100	260.8	97.8	75-134	0	9		

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270981A	Instrument ID VMS6		Method:	SW8260C				
cis-1,3-Dichloropropene	82.15	5.0	100	0	82.2	70-130	0	
Dibromochloromethane	77.75	5.0	100	0	77.8	60-115	0	
Dibromomethane	96.1	5.0	100	0	96.1	79-126	0	
Dichlorodifluoromethane	132.6	5.0	100	0	133	20-120	0	s
Ethylbenzene	92.4	5.0	100	0	92.4	76-123	0	
Hexachlorobutadiene	117.7	5.0	100	1.5	116	70-155	0	
Hexachloroethane	68.8	5.0	100	0	68.8	50-124	0	
lodomethane	106.7	25	100	5.8	101	60-160	0	
Isopropylbenzene	94.3	5.0	100	0	94.3	80-127	0	
m,p-Xylene	185.5	10	200	0	92.8	75-130	0	
Methyl tert-butyl ether	85.65	5.0	100	0	85.6	68-129	0	
Methylene chloride	100.5	25	100	0	100	72-125	0	
Naphthalene	91.3	25	100	0	91.3	55-160	0	
n-Butylbenzene	94	5.0	100	0	94	75-145	0	
n-Propylbenzene	95.6	5.0	100	0	95.6	76-116	0	
o-Xylene	93.6	5.0	100	0	93.6	76-127	0	
o-Isopropyltoluene	95.55	5.0	100	0	95.6	61-164	0	
sec-Butylbenzene	96.1	5.0	100	0	96.1	80-134	0	
Styrene	92.1	5.0	100	0	92.1	83-137	0	
ert-Butyl alcohol	429.9	100	500	0	86	70-130	0	
ert-Butylbenzene	94.15	5.0	100	0	94.2	70-130	0	
Tetrachloroethene	104.7	5.0	100	0	105	68-166	0	
Tetrahydrofuran	81.55	5.0	100	0	81.6	54-139	0	
Toluene	93.3	5.0	100	0	93.3	76-125	0	
rans-1,2-Dichloroethene	109.2	5.0	100	9.5	99.7	80-140	0	
rans-1,3-Dichloropropene	74.6	5.0	100	0	74.6	56-132	0	
rans-1,4-Dichloro-2-butene	46.65	10	100	0	46.6	46-118	0	
Trichloroethene	325.1	5.0	100	217.8	107	77-125	0	
Trichlorofluoromethane	96	5.0	100	0	96	60-140	0	
/inyl chloride	133	5.0	100	28.2	105	50-136	0	
Surr: 1,2-Dichloroethane-d	97.85	0	100	0	97.8	75-120	0	
Surr: 4-Bromofluorobenzer	ne 97.75	0	100	0	97.8	80-110	0	
Surr: Dibromofluoromethan	ne 96.25	0	100	0	96.2	85-115	0	
Surr: Toluene-d8	99.05	0	100	0	99	85-110	0	

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

QC BATCH REPORT

Batch ID: R270981A Ins	strument ID VMS6		Metho	d: SW8260 0	;					
MSD Sample	ID: 19090657-12A MSD				Units: µg/I	L	Analysi	s Date: 9/	20/2019 1	0:53 AM
Client ID: COL-GW-12	Run ID	VMS6_	190919A	S	eqNo: 593	2155	Prep Date:		DF: 5	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1,2-Tetrachloroethane	90.8	5.0	100	0	90.8	73-114	86.95	4.33	30	
1,1,1-Trichloroethane	98.7	5.0	100	0	98.7	75-130	91.7	7.35	30	
1,1,2,2-Tetrachloroethane	94.05	5.0	100	0	94	75-130	89.8	4.62	30	
1,1,2-Trichloroethane	88.8	5.0	100	0	88.8	75-125	88	0.905	30	
1,1-Dichloroethane	103.6	5.0	100	0	104	68-142	96.75	6.79	30	
1,1-Dichloroethene	122.2	5.0	100	2.7	119	70-145	115	6.07	30	
1,1-Dichloropropene	97.45	5.0	100	0	97.4	75-135	99.45	2.03	30	
1,2,3-Trichlorobenzene	100.8	5.0	100	0	101	70-140	91.15	10.1	30	
1,2,3-Trichloropropane	92.65	5.0	100	0	92.6	75-125	86.15	7.27	30	
1,2,4-Trichlorobenzene	96.4	5.0	100	1.2	95.2	70-135	90.55	6.26	30	
1,2,4-Trimethylbenzene	93.5	5.0	100	0	93.5	75-130	89	4.93	30	
1,2-Dibromo-3-chloropropane	91.9	5.0	100	0	91.9	60-130	81.25	12.3	30	
1,2-Dibromoethane	97.4	5.0	100	0	97.4	67-155	93.65	3.93	30	
1,2-Dichlorobenzene	93.5	5.0	100	0	93.5	70-130	93.8	0.32	30	
1,2-Dichloroethane	88.9	5.0	100	0	88.9	78-125	87.8	1.25	30	
1,2-Dichloropropane	92.65	5.0	100	0	92.6	75-125	94.1	1.55	30	
1,3,5-Trimethylbenzene	93.25	5.0	100	0	93.2	75-130	89.7	3.88	30	
1,3-Dichlorobenzene	97.2	5.0	100	0	97.2	75-130	95.6	1.66	30	
1,3-Dichloropropane	93.7	5.0	100	0	93.7	75-125	91.05	2.87	30	
1,4-Dichlorobenzene	94.15	5.0	100	0	94.2	75-130	94.3	0.159	30	
2,2-Dichloropropane	70.95	5.0	100	0	71	43-150	65.35	8.22	30	
2-Butanone	89.9	25	100	0	89.9	55-150	83.6	7.26	30	
2-Chlorotoluene	98.95	5.0	100	0	99	76-117	93.7	5.45	30	
2-Hexanone	89	25	100	0	89	60-135	83.9	5.9	30	
1-Chlorotoluene	97.05	5.0	100	0	97	80-125	93.05	4.21	30	
1-Isopropyltoluene	93.5	5.0	100	0	93.5	61-164	95.55	2.17	30	
1-Methyl-2-pentanone	117.3	5.0	100	0	117	77-178	101.6	14.3	30	
Acetone	104.3	50	100	8.2	96.1	60-160	94.1	10.3	30	
Acrylonitrile	85.9	5.0	100	0	85.9	60-140	80.1	6.99	30	
Benzene	95.8	5.0	100	0	95.8	70-130	95.85	0.0522	30	
Bromobenzene	94.6	5.0	100	0	94.6	80-125	88.7	6.44	30	
Bromochloromethane	96.95	5.0	100	0	97	72-141	86.2	11.7	30	
Bromodichloromethane	92.95	5.0	100	0	93	75-125	90.35	2.84	30	
Bromoform	76.5	5.0	100	0	76.5	60-125	72.25	5.71	30	
Bromomethane	115.2	5.0	100	0	115	30-185	98.2	15.9	30	
Carbon disulfide	99.9	5.0	100	1.5	98.4	60-165	94.3	5.77	30	
Carbon tetrachloride	106	5.0	100	0	106	65-140	103.2	2.68	30	
Chlorobenzene	98	5.0	100	0	98	80-120	92.4	5.88	30	
Chloroethane	107	5.0	100	0	107	31-172	101.2	5.52	30	
Chloroform	97.35	5.0	100	0	97.4	66-135	92.05	5.52	30	
Chloromethane	111	5.0	100	2.45	108	46-148	108.6	2.09	30	
is-1,2-Dichloroethene	376.4	5.0	100	260.8	116	75-134	358.6	2.09 4.84	30	

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

QC BATCH REPORT

Batch ID: R270981A	Instrument ID VMS6		Method:	SW8260C						
cis-1,3-Dichloropropene	84.7	5.0	100	0	84.7	70-130	82.15	3.06	30	
Dibromochloromethane	84.4	5.0	100	0	84.4	60-115	77.75	8.2	30	
Dibromomethane	102	5.0	100	0	102	79-126	96.1	5.96	30	
Dichlorodifluoromethane	137	5.0	100	0	137	20-120	132.6	3.3	30	S
Ethylbenzene	94.75	5.0	100	0	94.8	76-123	92.4	2.51	30	
Hexachlorobutadiene	98.6	5.0	100	1.5	97.1	70-155	117.7	17.7	30	
Hexachloroethane	71.1	5.0	100	0	71.1	50-124	68.8	3.29	30	
lodomethane	114.8	25	100	5.8	109	60-160	106.7	7.31	30	
Isopropylbenzene	96.8	5.0	100	0	96.8	80-127	94.3	2.62	30	
m,p-Xylene	191	10	200	0	95.5	75-130	185.5	2.9	30	
Methyl tert-butyl ether	92.2	5.0	100	0	92.2	68-129	85.65	7.37	30	
Methylene chloride	106.6	25	100	0	107	72-125	100.5	5.84	30	
Naphthalene	99.3	25	100	0	99.3	55-160	91.3	8.39	30	
n-Butylbenzene	90.35	5.0	100	0	90.4	75-145	94	3.96	30	
n-Propylbenzene	98.9	5.0	100	0	98.9	76-116	95.6	3.39	30	
o-Xylene	97.6	5.0	100	0	97.6	76-127	93.6	4.18	30	
p-Isopropyltoluene	93.5	5.0	100	0	93.5	61-164	95.55	2.17	30	
sec-Butylbenzene	95.55	5.0	100	0	95.6	80-134	96.1	0.574	30	
Styrene	96.4	5.0	100	0	96.4	83-137	92.1	4.56	30	
tert-Butyl alcohol	446.2	100	500	0	89.2	70-130	429.9	3.72	30	
tert-Butylbenzene	95.35	5.0	100	0	95.4	70-130	94.15	1.27	30	
Tetrachloroethene	105.4	5.0	100	0	105	68-166	104.7	0.666	30	
Tetrahydrofuran	89.4	5.0	100	0	89.4	54-139	81.55	9.18	30	
Toluene	96.25	5.0	100	0	96.2	76-125	93.3	3.11	30	
trans-1,2-Dichloroethene	118.5	5.0	100	9.5	109	80-140	109.2	8.17	30	
rans-1,3-Dichloropropene	79.8	5.0	100	0	79.8	56-132	74.6	6.74	30	
trans-1,4-Dichloro-2-butene	48	10	100	0	48	46-118	46.65	2.85	30	
Trichloroethene	329.7	5.0	100	217.8	112	77-125	325.1	1.41	30	
Trichlorofluoromethane	104.7	5.0	100	0	105	60-140	96	8.67	30	
Vinyl chloride	141.4	5.0	100	28.2	113	50-136	133	6.12	30	
Surr: 1,2-Dichloroethane-d	97	0	100	0	97	75-120	97.85	0.872	30	
Surr: 4-Bromofluorobenzer	ne 96.8	0	100	0	96.8	80-110	97.75	0.977	30	
Surr: Dibromofluoromethan	ne 100.4	0	100	0	100	85-115	96.25	4.22	30	
Surr: Toluene-d8	99.4	0	100	0	99.4	85-110	99.05	0.353	30	

The following samples were analyzed in this batch:

19090657-12A 19090657-

15A

19090657-13A 19090657-14A

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

QC BATCH REPORT

Batch ID: R271001B	Instrument ID VMS6		Metho	d: SW82 0	60C					
	le ID: VBLKW1-190920-R2	71001B			Units: µg/I	L	Analy	sis Date:	9/20/2019 0	2:22 PN
Client ID:	Run II	D: VMS6_	190920A		SeqNo: 593	3672	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	U	1.0								
1,1,1-Trichloroethane	U	1.0								
1,1,2,2-Tetrachloroethane	U	1.0								
1,1,2-Trichloroethane	U	1.0								
1,1,2-Trichlorotrifluoroethane		1.0								
1,1-Dichloroethane	U	1.0								
1,1-Dichloroethene	U	1.0								
1,1-Dichloropropene	U	1.0								
1,2,3-Trichlorobenzene	U	1.0								
1,2,3-Trichloropropane	U	1.0								
1,2,4-Trichlorobenzene	U	1.0								
1,2,4-Trimethylbenzene	U	1.0								
1,2-Dibromo-3-chloropropand										
1,2-Dibromoethane	U	1.0								
1,2-Dichlorobenzene	U	1.0								
1,2-Dichloroethane	U	1.0								
		1.0								
1,2-Dichloropropane	U	1.0								
1,3,5-Trichlorobenzene	U	1.0								
1,3,5-Trimethylbenzene	U	1.0								
1,3-Dichlorobenzene	U	1.0								
1,3-Dichloropropane	U	1.0								
1,4-Dichlorobenzene	U	1.0								
2,2-Dichloropropane	U	1.0								
2-Butanone	U	5.0								
2-Chloroethyl vinyl ether	U	1.0								
2-Chlorotoluene	U	1.0								
2-Hexanone	U	5.0								
2-Methylnaphthalene	U	5.0								
4-Chlorotoluene	U	1.0								
4-Isopropyltoluene	U	1.0								
4-Methyl-2-pentanone	U	1.0								
Acetone	U	10								
Acrolein	U	1.0								
Acrylonitrile	U	1.0								
Benzene	U	1.0								
Benzyl chloride	U	1.0								
Bromobenzene	U	1.0								
Bromochloromethane	U	1.0								
Bromodichloromethane	U	1.0								
Bromoform	U	1.0								
Bromomethane	1.73	1.0								
Carbon disulfide	U	1.0								

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R271001B	Instrument ID VMS6		Method:	SW8260C				
Carbon tetrachloride	U	1.0						
Chlorobenzene	U	1.0						
Chloroethane	U	1.0						
Chloroform	U	1.0						
Chloromethane	U	1.0						
cis-1,2-Dichloroethene	U	1.0						
cis-1,3-Dichloropropene	U	1.0						
Dibromochloromethane	U	1.0						
Dibromomethane	U	1.0						
Dichlorodifluoromethane	U	1.0						
Ethylbenzene	U	1.0						
Hexachlorobutadiene	0.82	1.0						J
Hexachloroethane	U	1.0						
Hexane	U	1.0						
lodomethane	U	5.0						
Isopropylbenzene	U	1.0						
m,p-Xylene	U	2.0						
Methyl tert-butyl ether	U	1.0						
Methylene chloride	U	5.0						
Naphthalene	U	5.0						
n-Butylbenzene	U	1.0						
n-Propylbenzene	U	1.0						
o-Xylene	U	1.0						
p-Isopropyltoluene	U	1.0						
sec-Butylbenzene	U	1.0						
Styrene	U	1.0						
tert-Butyl alcohol	U	20						
tert-Butylbenzene	U	1.0						
Tetrachloroethene	U	1.0						
Tetrahydrofuran	U	1.0						
Toluene	U	1.0						
trans-1,2-Dichloroethene	U	1.0						
trans-1,3-Dichloropropene	U	1.0						
trans-1,4-Dichloro-2-butene	U	2.0						
Trichloroethene	U							
Trichlorofluoromethane	U							
Vinyl acetate	U							
Vinyl chloride	U							
Surr: 1,2-Dichloroethane-			20	0	101	75-120	0	
Surr: 4-Bromofluorobenze			20	0	95.2	80-110	0	
Surr: Dibromofluorometh			20	0	93	85-115	0	
Surr: Toluene-d8	19.94	0	20	0	99.7	85-110	0	

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

19090657

Project:

LCS S	ample ID: VLCSW	1-190920-R27	71001B			ι	Jnits: µg/L		Analys	sis Date:	9/20/2019 ()1:33 PI
Client ID:		Run ID	: VMS6_	190920A		Se	qNo: 593 :	3671	Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	1.114	Qual
1,1,1,2-Tetrachloroetha	ne	19.85	1.0	20		0	99.2	73-114	C	1		
1,1,1-Trichloroethane		19.27	1.0	20		0	96.4	75-130	C	ř.		
1,1,2,2-Tetrachloroetha	ne	20.46	1.0	20		0	102	75-130	C),		
1,1,2-Trichloroethane		19.57	1.0	20		0	97.8	75-125	C	I.		
1,1-Dichloroethane		20.77	1.0	20		0	104	68-142	C	r.		
1,1-Dichloroethene		21.61	1.0	20		0	108	70-145	C	Ĺ		
1,1-Dichloropropene		19.59	1.0	20		0	98	75-135	C			
1,2,3-Trichlorobenzene		22.51	1.0	20		0	113	70-140	C	K.		
1,2,3-Trichloropropane		20.09	1.0	20		0	100	75-125	C	1		
1,2,4-Trichlorobenzene		21.04	1.0	20		0	105	70-135	C)		
1,2,4-Trimethylbenzene		18.98	1.0	20		0	94.9	75-130	c	V.		
1,2-Dibromo-3-chloropro	opane	19.17	1.0	20		0	95.8	60-130	C	E.		
1,2-Dibromoethane		22.16	1.0	20		0	111	67-155	C			
1,2-Dichlorobenzene		19.77	1.0	20		0	98.8	70-130	C	E		
1,2-Dichloroethane		19.65	1.0	20		0	98.2	78-125	C			
1,2-Dichloropropane		19.94	1.0	20		0	99.7	75-125	C	E		
1,3,5-Trimethylbenzene		19.14	1.0	20		0	95.7	75-130	C			
1,3-Dichlorobenzene		20.92	1.0	20		0	105	75-130	C			
1,3-Dichloropropane		21.12	1.0	20		0	106	75-125	C			
1,4-Dichlorobenzene		20.17	1.0	20		0	101	75-130	C			
2,2-Dichloropropane		22.89	1.0	20		0	114	43-150	C			
2-Butanone		19.78	5.0	20		0	98.9	55-150	C			
2-Chlorotoluene		19.55	1.0	20		0	97.8	76-117	C			
2-Hexanone		19.15	5.0	20		0	95.8	60-135	C			
4-Chlorotoluene		19.98	1.0	20		0	99.9	80-125	0			
1-Isopropyltoluene		20.26	1.0	20		0	101	61-164	C			
4-Methyl-2-pentanone		25.51	1.0	20		0	128	77-178	0			
Acetone		16.61	10	20		0	83	60-160	0			
Acrylonitrile		18.5	1.0	20		0	92.5	60-140	0			
Benzene		20.03	1.0	20		0	100	70-130	0			
Bromobenzene		20	1.0	20		0	100	80-125	0			
Bromochloromethane		19.99	1.0	20		0	100	72-141	0			
Bromodichloromethane		20.27	1.0	20		0	100	75-141	0			
Bromoform		17.31	1.0	20		0	86.6	60-125	0			
Bromomethane		30.14	1.0	20		0	151	30-125	0			D
Carbon disulfide		20.83	1.0	20		0	104	60-165	0			В
Carbon distillide		19.87	1.0	20		0	99.4		0			
		20.81						65-140				
Chlorobenzene		20.37	1.0	20		0	104	80-120	0			
Chloroethane			1.0	20		0	102	31-172	0			
Chloroform		20.16	1.0	20		0	101	66-135	0			
Chloromethane		25.52	1.0	20		0	128	46-148	0			

BB&E, Inc.
19090657

QC BATCH REPORT

Project: SSW Collis 2019 LTM Task 3

Client:

Work Order:

Batch ID: R271001B	Instrument ID VMS6		Method:	SW8260C				
cis-1,3-Dichloropropene	20.22	1.0	20	0	101	70-130	0	
Dibromochloromethane	18.64	1.0	20	0	93.2	60-115	0	
Dibromomethane	21.5	1.0	20	0	108	79-126	0	
Dichlorodifluoromethane	23.33	1.0	20	0	117	20-120	0	
Ethylbenzene	19.54	1.0	20	0	97.7	76-123	0	
Hexachlorobutadiene	25.78	1.0	20	0	129	70-155	0	
Hexachloroethane	17.15	1.0	20	0	85.8	50-124	0	
odomethane	24.64	5.0	20	0	123	60-160	0	
sopropylbenzene	19.16	1.0	20	0	95.8	80-127	0	
n,p-Xylene	39.34	2.0	40	0	98.4	75-130	0	
Methyl tert-butyl ether	19.43	1.0	20	0	97.2	68-129	0	
Methylene chloride	22.44	5.0	20	0	112	72-125	0	
Naphthalene	21.05	5.0	20	0	105	55-160	0	
-Butylbenzene	20.75	1.0	20	0	104	75-145	0	
-Propylbenzene	20.22	1.0	20	0	101	76-116	0	
-Xylene	19.99	1.0	20	0	100	76-127	0	
-Isopropyltoluene	20.26	1.0	20	0	101	61-164	0	
ec-Butylbenzene	20.45	1.0	20	0	102	80-134	0	
Styrene	20.31	1.0	20	0	102	83-137	0	
ert-Butyl alcohol	97.19	20	100	0	97.2	70-130	0	
ert-Butylbenzene	19.88	1.0	20	0	99.4	70-130	0	
etrachloroethene	21.45	1.0	20	0	107	68-166	0	
etrahydrofuran	20.36	1.0	20	0	102	54-139	0	
oluene	20.11	1.0	20	0	101	76-125	0	
rans-1,2-Dichloroethene	21.9	1.0	20	0	110	80-140	0	
ans-1,3-Dichloropropene	19.77	1.0	20	0	98.8	56-132	0	
ans-1,4-Dichloro-2-butene	13.39	2.0	20	0	67	46-118	0	
richloroethene	20.07	1.0	20	0	100	77-125	0	
richlorofluoromethane	18.46	1.0	20	0	92.3	60-140	0	
inyl chloride	21.3	1.0	20	0	106	50-136	0	
Surr: 1,2-Dichloroethane-o	20.36	0	20	0	102	75-120	0	
Surr: 4-Bromofluorobenzei	ne 19.29	0	20	0	96.4	80-110	0	
Surr: Dibromofluoromethal	ne 19.26	0	20	0	96.3	85-115	0	
Surr: Toluene-d8	20.03	0	20	0	100	85-110	0	

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

19090657

Project:

Batch ID: R271001B	Instrument ID VMS6		Metho	d: SW8260C						
MS San	nple ID: 19090657-14A MS			1	Units: µg/l	L	Analys	is Date: \$	9/20/2019	11:09 PI
Client ID: COL-GW-14	Run II	: VMS6_	190920A	Se	eqNo: 593	3688	Prep Date:		DF: 5	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	81.45	5.0	100	0	81.4	73-114	0			
1,1,1-Trichloroethane	87.95	5.0	100	0	88	75-130	0			
1,1,2,2-Tetrachloroethane	91.05	5.0	100	0	91	75-130	0			
1,1,2-Trichloroethane	88.8	5.0	100	0	88.8	75-125	0			
1,1-Dichloroethane	92.15	5.0	100	0	92.2	68-142	0			
1,1-Dichloroethene	105.5	5.0	100	1.7	104	70-145	0			
1,1-Dichloropropene	86.45	5.0	100	0	86.4	75-135	0			
1,2,3-Trichlorobenzene	91.5	5.0	100	0	91.5	70-140	0			
1,2,3-Trichloropropane	92.8	5.0	100	0	92.8	75-125	0			
1,2,4-Trichlorobenzene	88.8	5.0	100	0	88.8	70-135	0			
1,2,4-Trimethylbenzene	85.1	5.0	100	0	85.1	75-130	0			
1,2-Dibromo-3-chloropropa		5.0	100	0	86.2	60-130	0			
1,2-Dibromoethane	91.25	5.0	100	0	91.2	67-155	0			
1,2-Dichlorobenzene	85.6	5.0	100	0	85.6	70-130	0			
,2-Dichloroethane	82.65	5.0	100	0	82.6	78-125	0			
,2-Dichloropropane	86.6	5.0	100	0	86.6	75-125	0			
,3,5-Trimethylbenzene	84.4	5.0	100	0	84.4	75-130	0			
,3-Dichlorobenzene	87.15	5.0	100	0	87.2	75-130	0			
,3-Dichloropropane	90.85	5.0	100	0	90.8	75-135	0			
,4-Dichlorobenzene	85.45	5.0	100	0	85.4	75-120	0			
2,2-Dichloropropane	81.4	5.0	100	0	81.4	43-150	0			
2-Butanone	92.05	25	100	0	92	55-150	0			
2-Chlorotoluene	89.65	5.0	100	0	89.6	76-117	0			
2-Hexanone	93.5	25	100	0	93.5	60-135	0			
I-Chlorotoluene	90.3	5.0	100	0	90.3	80-135	0			
I-Isopropyltoluene	86.4	5.0	100	0			0			
I-Methyl-2-pentanone	117.8	5.0	100	0	86.4	61-164 77-178				
Acetone	93.3				118		0			
	85.6	50 5.0	100	6.4	86.9	60-160	0			
Acrylonitrile	89.35	5.0	100	0	85.6	60-140	0			
Benzene		5.0	100	0	89.4	70-130	0			
Bromobenzene	86.95 85.85	5.0	100	0	87	80-125	0			
Bromochloromethane		5.0	100	0	85.8	72-141	0			
Bromodichloromethane	85	5.0	100	0	85	75-125	0			
Bromoform	71.4	5.0	100	0	71.4	60-125	0			
Bromomethane	89.45	5.0	100	0	89.4	30-185	0			В
Carbon disulfide	84.15	5.0	100	0	84.2	60-165	0			
Carbon tetrachloride	90.2	5.0	100	0	90.2	65-140	0			
Chlorobenzene	88.7	5.0	100	0	88.7	80-120	0			
Chloroethane	106.8	5.0	100	0	107	31-172	0			
Chloroform	87.95	5.0	100	0	88	66-135	0			
Chloromethane	108.4	5.0	100	0	108	46-148	0			

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R271001B	Instrument ID VMS6		Method:	SW8260C				
cis-1,3-Dichloropropene	82	5.0	100	0	82	70-130	0	
Dibromochloromethane	74.7	5.0	100	0	74.7	60-115	0	
Dibromomethane	90.4	5.0	100	0	90.4	79-126	0	
Dichlorodifluoromethane	126	5.0	100	0	126	20-120	0	s
Ethylbenzene	86.65	5.0	100	0	86.6	76-123	0	
Hexachlorobutadiene	125.8	5.0	100	0	126	70-155	0	
Hexachloroethane	63.4	5.0	100	0	63.4	50-124	0	
lodomethane	77.2	25	100	3.4	73.8	60-160	0	
Isopropylbenzene	88.65	5.0	100	0	88.6	80-127	0	
m,p-Xylene	174	10	200	0	87	75-130	0	
Methyl tert-butyl ether	84.4	5.0	100	0	84.4	68-129	0	
Methylene chloride	100.1	25	100	0	100	72-125	0	
Naphthalene	95.05	25	100	0	95	55-160	0	
n-Butylbenzene	87.05	5.0	100	0	87	75-145	0	
n-Propylbenzene	90.65	5.0	100	0	90.6	76-116	0	
o-Xylene	90.1	5.0	100	0	90.1	76-127	0	
p-Isopropyltoluene	86.4	5.0	100	0	86.4	61-164	0	
sec-Butylbenzene	92.15	5.0	100	0	92.2	80-134	0	
Styrene	88.5	5.0	100	0	88.5	83-137	0	
tert-Butyl alcohol	434.1	100	500	0	86.8	70-130	0	
tert-Butylbenzene	89.05	5.0	100	0	89	70-130	0	
Tetrachloroethene	91.85	5.0	100	0	91.8	68-166	0	
Tetrahydrofuran	99.75	5.0	100	0	99.8	54-139	0	
Toluene	90.8	5.0	100	0	90.8	76-125	0	
trans-1,2-Dichloroethene	107.9	5.0	100	11.4	96.5	80-140	0	
trans-1,3-Dichloropropene	75.75	5.0	100	0	75.8	56-132	0	
trans-1,4-Dichloro-2-butene	52	10	100	0	52	46-118	0	
Trichloroethene	95.35	5.0	100	0	95.4	77-125	0	
Trichlorofluoromethane	95.25	5.0	100	0	95.2	60-140	0	
Vinyl chloride	212	5.0	100	110.7	101	50-136	0	
Surr: 1,2-Dichloroethane-	-d4 99.65	0	100	0	99.6	75-120	0	
Surr: 4-Bromofluorobenze		0	100	0	99	80-110	0	
Surr: Dibromofluorometha		0	100	0	94.8	85-115	0	
Surr: Toluene-d8	97.25	0	100	0	97.2	85-110	0	

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

19090657

Project:

Batch ID: R271001B Instrume	nt ID VMS6		Metho	d: SW8260 0	;					
MSD Sample ID: 190	090657-14A MSD				Units: µg/l		Analys	is Date: 9/	20/2019 1	1:34 PM
Client ID: COL-GW-14	Run ID	: VMS6_	190920A	S	eqNo: 593	3689	Prep Date:		DF: 5	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	74.5	5.0	100	0	74.5	73-114	81.45	8.91	30	
1,1,1-Trichloroethane	76.85	5.0	100	0	76.8	75-130	87.95	13.5	30	
1,1,2,2-Tetrachloroethane	91.7	5.0	100	0	91.7	75-130	91.05	0.711	30	
1,1,2-Trichloroethane	79.2	5.0	100	0	79.2	75-125	88.8	11.4	30	
1,1-Dichloroethane	83.4	5.0	100	0	83.4	68-142	92.15	9.97	30	
1,1-Dichloroethene	94.75	5.0	100	1.7	93	70-145	105.5	10.7	30	
1,1-Dichloropropene	78.9	5.0	100	0	78.9	75-135	86.45	9.13	30	
1,2,3-Trichlorobenzene	91.7	5.0	100	0	91.7	70-140	91.5	0.218	30	
1,2,3-Trichloropropane	86.1	5.0	100	0	86.1	75-125	92.8	7.49	30	
1,2,4-Trichlorobenzene	83.9	5.0	100	0	83.9	70-135	88.8	5.67	30	
1,2,4-Trimethylbenzene	77	5.0	100	0	77	75-130	85.1	9.99	30	
1,2-Dibromo-3-chloropropane	82.45	5.0	100	0	82.4	60-130	86.2	4.45	30	
1,2-Dibromoethane	88.65	5.0	100	0	88.6	67-155	91.25	2.89	30	
1,2-Dichlorobenzene	81.25	5.0	100	0	81.2	70-130	85.6	5.21	30	
1,2-Dichloroethane	76.2	5.0	100	0	76.2	78-125	82.65	8.12	30	S
1,2-Dichloropropane	81.1	5.0	100	0	81.1	75-125	86.6	6.56	30	O
1,3,5-Trimethylbenzene	77.15	5.0	100	0	77.2	75-130	84.4	8.98	30	
1,3-Dichlorobenzene	83.4	5.0	100	0	83.4	75-130	87.15	4.4	30	
1,3-Dichloropropane	83	5.0	100	0	83	75-125	90.85	9.03	30	
1,4-Dichlorobenzene	80.4	5.0	100	0	80.4	75-130	85.45	6.09	30	
2,2-Dichloropropane	69.85	5.0	100	0	69.8	43-150	81.4	15.3	30	
2-Butanone	95.25	25	100	0	95.2	55-150	92.05	3.42	30	
2-Chlorotoluene	81.1	5.0	100	0	81.1	76-117	89.65	10	30	
2-Hexanone	89.55	25	100	0	89.6	60-135	93.5	4.32	30	
4-Chlorotoluene	80.35	5.0	100	0	80.4	80-125	90.3	11.7	30	
	78.6									
4-Isopropyltoluene	111	5.0	100	0	78.6	61-164	86.4	9.45	30	
4-Methyl-2-pentanone	96.4	5.0 50	100	0	111	77-178	117.8	5.94	30	
Acetone	96.4 87.35		100	6.4	90	60-160	93.3	3.27	30	
Acrylonitrile	80.1	5.0	100	0	87.4	60-140	85.6	2.02	30	
Benzene		5.0	100	0	80.1	70-130	89.35	10.9	30	_
Bromobenzene	77.9	5.0	100	0	77.9	80-125	86.95	11	30	S
Bromochloromethane	80.65	5.0	100	0	80.6	72-141	85.85	6.25	30	
Bromodichloromethane	78.05	5.0	100	0	78	75-125	85	8.52	30	
Bromoform	67.05	5.0	100	0	67	60-125	71.4	6.28	30	_
Bromomethane	104.6	5.0	100	0	105	30-185	89.45	15.6	30	В
Carbon disulfide	75.5	5.0	100	0	75.5	60-165	84.15	10.8	30	
Carbon tetrachloride	79	5.0	100	0	79	65-140	90.2	13.2	30	
Chlorobenzene	80.75	5.0	100	0	80.8	80-120	88.7	9.38	30	
Chloroethane	90.4	5.0	100	0	90.4	31-172	106.8	16.6	30	
Chloroform	82.05	5.0	100	0	82	66-135	87.95	6.94	30	
Chloromethane	108.9	5.0	100	0	109	46-148	108.4	0.506	30	
cis-1,2-Dichloroethene	288	5.0	100	233	55	75-134	319.2	10.3	30	S

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

QC BATCH REPORT

Batch ID: R271001B	Instrument ID VMS6		Method:	SW8260C						
cis-1,3-Dichloropropene	75.35	5.0	100	0	75.4	70-130	82	8.45	30	
Dibromochloromethane	70.8	5.0	100	0	70.8	60-115	74.7	5.36	30	
Dibromomethane	86.6	5.0	100	0	86.6	79-126	90.4	4.29	30	
Dichlorodifluoromethane	110.9	5.0	100	0	111	20-120	126	12.8	30	
Ethylbenzene	75.75	5.0	100	0	75.8	76-123	86.65	13.4	30	S
Hexachlorobutadiene	120.4	5.0	100	0	120	70-155	125.8	4.39	30	
Hexachloroethane	58.9	5.0	100	0	58.9	50-124	63.4	7.36	30	
lodomethane	91.8	25	100	3.4	88.4	60-160	77.2	17.3	30	
Isopropylbenzene	79.6	5.0	100	0	79.6	80-127	88.65	10.8	30	S
m,p-Xylene	154.9	10	200	0	77.4	75-130	174	11.6	30	
Methyl tert-butyl ether	83.25	5.0	100	0	83.2	68-129	84.4	1.37	30	
Methylene chloride	90.4	25	100	0	90.4	72-125	100.1	10.2	30	
Naphthalene	96.6	25	100	0	96.6	55-160	95.05	1.62	30	
n-Butylbenzene	80.75	5.0	100	0	80.8	75-145	87.05	7.51	30	
n-Propylbenzene	80.85	5.0	100	0	80.8	76-116	90.65	11.4	30	
o-Xylene	79.2	5.0	100	0	79.2	76-127	90.1	12.9	30	
p-Isopropyltoluene	78.6	5.0	100	0	78.6	61-164	86.4	9.45	30	
sec-Butylbenzene	83.1	5.0	100	0	83.1	80-134	92.15	10.3	30	
Styrene	78.45	5.0	100	0	78.4	83-137	88.5	12	30	S
tert-Butyl alcohol	382.4	100	500	0	76.5	70-130	434.1	12.7	30	
tert-Butylbenzene	80.05	5.0	100	0	80	70-130	89.05	10.6	30	
Tetrachloroethene	83.9	5.0	100	0	83.9	68-166	91.85	9.05	30	
Tetrahydrofuran	92.95	5.0	100	0	93	54-139	99.75	7.06	30	
Toluene	79.45	5.0	100	0	79.4	76-125	90.8	13.3	30	
trans-1,2-Dichloroethene	94.6	5.0	100	11.4	83.2	80-140	107.9	13.1	30	
trans-1,3-Dichloropropene	69.95	5.0	100	0	70	56-132	75.75	7.96	30	
trans-1,4-Dichloro-2-butene	46.55	10	100	0	46.6	46-118	52	11.1	30	
Trichloroethene	83.2	5.0	100	0	83.2	77-125	95.35	13.6	30	
Trichlorofluoromethane	82.5	5.0	100	0	82.5	60-140	95.25	14.3	30	
Vinyl chloride	188.9	5.0	100	110.7	78.2	50-136	212	11.5	30	
Surr: 1,2-Dichloroethane-d	97.95	0	100	0	98	75-120	99.65	1.72	30	
Surr: 4-Bromofluorobenzer	ne 97.9	0	100	0	97.9	80-110	98.95	1.07	30	
Surr: Dibromofluoromethar	ne 95.85	0	100	0	95.8	85-115	94.85	1.05	30	
Surr: Toluene-d8	97.9	0	100	0	97.9	85-110	97.25	0.666	30	

The following samples were analyzed in this batch:

19090657-08A 19090657-14A 19090657-12A 19090657-15A 19090657-13A

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R271003 Instrument	U VMS11		Metho	od: SW82 6	50C					
MBLK Sample ID: VBLK	(W2-190919-R2	71003			Units: µg/I	L'angle	Analy	sis Date: 9	/20/2019	02:33 AN
Client ID:	Run II): VMS11	_190919A		SeqNo: 593	2628	Prep Date:		DF: 1	
				SPK Ref		Control	RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	U	1.0								
1,1,1-Trichloroethane	U	1.0								
1,1,2,2-Tetrachloroethane	U	1.0								
1,1,2-Trichloroethane	U	1.0								
1,1,2-Trichlorotrifluoroethane	U	1.0								
1,1-Dichloroethane	U	1.0								
1,1-Dichloroethene	U	1.0								
1,1-Dichloropropene	U	1.0								
1,2,3-Trichlorobenzene	U	1.0								
1,2,3-Trichloropropane	U	1.0								
1,2,4-Trichlorobenzene	U	1.0								
1,2,4-Trimethylbenzene	U	1.0								
1,2-Dibromo-3-chloropropane	U	1.0								
1,2-Dibromoethane	U	1.0								
1,2-Dichlorobenzene	U	1.0								
1,2-Dichloroethane	U	1.0								
1,2-Dichloropropane	U	1.0								
1,3,5-Trichlorobenzene	U	1.0								
1,3,5-Trimethylbenzene	U	1.0								
1,3-Dichlorobenzene	U	1.0								
1,3-Dichloropropane	U	1.0								
1,4-Dichlorobenzene	U	1.0								
2,2-Dichloropropane	U	1.0								
2-Butanone	U	5.0								
2-Chloroethyl vinyl ether	U	1.0								
2-Chlorotoluene	U	1.0								
2-Hexanone	U	5.0								
?-Methylnaphthalene	U	5.0								
-Chlorotoluene	U	1.0								
-Isopropyltoluene	U	1.0								
-Methyl-2-pentanone	U	1.0								
cetone	U	1.0								
crolein	U	1.0								
crylonitrile	U									
denzene	U	1.0								
enzyl chloride	U	1.0								
romobenzene	U	1.0								
romochloromethane	U	1.0								
romodichloromethane	U	1.0								
romoform		1.0								
romomethane	U	1.0								
arbon disulfide	U	1.0								

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R271003	Instrument ID VMS11			Method:	SW8260C				
Carbon tetrachloride		U	1.0						
Chlorobenzene		U	1.0						
Chloroethane		U	1.0						
Chloroform		U	1.0						
Chloromethane		U	1.0						
cis-1,2-Dichloroethene		U	1.0						
cis-1,3-Dichloropropene		U	1.0						
Dibromochloromethane		U	1.0						
Dibromomethane		U	1.0						
Dichlorodifluoromethane		U	1.0						
Ethylbenzene		U	1.0						
Hexachlorobutadiene		U	1.0						
Hexachloroethane		U	1.0						
Hexane		U	1.0						
lodomethane		U	5.0						
Isopropylbenzene		U	1.0						
m,p-Xylene		U ;	2.0						
Methyl tert-butyl ether	1	U	1.0						
Methylene chloride		U ,	5.0						
Naphthalene		U :	5.0						
n-Butylbenzene		U	1.0						
n-Propylbenzene	Į.	U	1.0						
o-Xylene	(U ·	1.0						
p-Isopropyltoluene	l	U 1	1.0						
sec-Butylbenzene	l	U .	1.0						
Styrene	l	J ·	1.0						
tert-Butyl alcohol	l	J	20						
tert-Butylbenzene	l	J '	1.0						
Tetrachloroethene	l	J	1.0						
Tetrahydrofuran	Ų	J 1	1.0						
Toluene	Ų	J 1	1.0						
trans-1,2-Dichloroethene	l	J 1	1.0						
trans-1,3-Dichloropropene	0.58	5 1	0.1						J
rans-1,4-Dichloro-2-butene	l	J 2	2.0						
Trichloroethene	L	J 1	.0						
Trichlorofluoromethane	l	J 1	.0						
√inyl acetate	L	J 5	5.0						
√inyl chloride	l	J 1	.0						
Surr: 1,2-Dichloroethane-d	20.54	4	0	20	0	103	75-120	0	
Surr: 4-Bromofluorobenzer	ne 19.03	3	0	20	0	95.2	80-110	0	
Surr: Dibromofluoromethar	ne 20.04	1	0	20	0	100	85-115	0	
Surr: Toluene-d8	19.66	3	0	20	0	98.3	85-110	0	

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

QC BATCH REPORT

Batch ID: R271003	Instrument ID VMS11		Method	l: SW8260	С					
LCS Sam	ple ID: VLCSW2-190919-R2	71003			Units:	μg/L	Analy	sis Date: 9	/20/2019 (01:27 AM
Client ID:	Run I	D: VMS11	_190919A	:	SeqNo:	5932627	Prep Date:		DF: 1	
				SPK Ref		Cont	rol RPD Ref		RPD	
Analyte	Result	PQL	SPK Val	Value	%F	REC Lim		%RPD	Limit	Qual
1,1,1,2-Tetrachloroethane	18.37	1.0	20	C) Q	1.8 73-1	14)		
1,1,1-Trichloroethane	21.5	1.0	20	(08 75-1)		
1,1,2,2-Tetrachloroethane	19.74	1.0	20	C		8.7 75-1)		
1,1,2-Trichloroethane	18.59	1.0	20	C		93 75-1		5		
1,1-Dichloroethane	19.06	1.0	20	C		5.3 68-1)		
1,1-Dichloroethene	22.6	1.0	20	C		13 70-1				
1,1-Dichloropropene	19.45	1.0	20	0		7.2 75-1				
1,2,3-Trichlorobenzene	19.82	1.0	20	0		9.1 70-1				
1,2,3-Trichloropropane	18.62	1.0	20	0		3.1 75-1				
1,2,4-Trichlorobenzene	18.36	1.0	20	0		1.8 70-1				
1,2,4-Trimethylbenzene	18.57	1.0	20	0		2.8 75-1				
1,2-Dibromo-3-chloropropar		1.0	20	0		4.5 60-1				
1,2-Dibromoethane	19.38	1.0	20	0		6.9 67-1				
1,2-Dichlorobenzene	19.77	1.0	20	0		3.8 70-1				
1,2-Dichloroethane	18.47	1.0	20	0		2.4 78-1:				
1,2-Dichloropropane	19.34	1.0	20	0		6.7 75-1				
1,3,5-Trimethylbenzene	19.49	1.0	20	0		7.4 75-1.				
1,3-Dichlorobenzene	19.79	1.0	20	0		99 75-1				
1,3-Dichloropropane	18.02	1.0	20	0).1 75-1:				
1,4-Dichlorobenzene	19.4	1.0	20	0		97 75-1:				
2,2-Dichloropropane	17.64	1.0	20	0		3.2 43-1:				
2-Butanone	19.19	5.0	20	0		96 55-1				
2-Chlorotoluene	19.51	1.0	20	0		96 35-1: 7.6 76-1:				
2-Hexanone	16.82	5.0	20	0		l.1 60-1				
4-Chlorotoluene	18.97	1.0	20	0		l.8 80-12				
4-Isopropyltoluene	20.72	1.0	20	0		04 61-16				
4-Methyl-2-pentanone	20.37	1.0	20	0		02 77-17				
Acetone	18.25	1.0	20	0						
Acrylonitrile	16.86	1.0	20	0						
Benzene	18.76	1.0	20	0						
Bromobenzene	19.47	1.0	20	0						
Bromochloromethane	18.86	1.0	20	0						
Bromodichloromethane	21.69	1.0	20	0						
Bromoform	17.65	1.0	20	0						
Bromomethane	19.24	1.0	20	0						
Carbon disulfide	23.65	1.0	20	0						
Carbon tetrachloride	21.12	1.0	20	0		18 60-16 06 65-14				
Chlorobenzene	18.61	1.0	20	0		93 80-12				
Chloroethane	18.59	1.0	20	0						
Chloroform	19.21	1.0	20	0						
Chloromethane	19.16	1.0	20			96 66-13				
cis-1,2-Dichloroethene	19.58			0	95					
75 1,2-DIGHIOLOGUICHE	19.50	1.0	20	0	97	.9 75-13	0			

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

19090657

Project:

Batch ID: R271003	Instrument ID VMS11		Method:	SW8260C				
cis-1,3-Dichloropropene	19.4	1.0	20	0	97	70-130	0	
Dibromochloromethane	16.44	1.0	20	0	82.2	60-115	0	
Dibromomethane	19.93	1.0	20	0	99.6	79-126	0	
Dichlorodifluoromethane	26.28	1.0	20	0	131	20-120	0	S
Ethylbenzene	19.3	1.0	20	0	96.5	76-123	0	
Hexachlorobutadiene	19.28	1.0	20	0	96.4	70-155	0	
Hexachloroethane	17.49	1.0	20	0	87.4	50-124	0	
lodomethane	20.42	5.0	20	0	102	60-160	0	
Isopropylbenzene	19.9	1.0	20	0	99.5	80-127	0	
m,p-Xylene	38.4	2.0	40	0	96	75-130	0	
Methyl tert-butyl ether	18.7	1.0	20	0	93.5	68-129	0	
Methylene chloride	20.2	5.0	20	0	101	72-125	0	
Naphthalene	19.16	5.0	20	0	95.8	55-160	0	
n-Butylbenzene	21.08	1.0	20	0	105	75-145	0	
n-Propylbenzene	19.68	1.0	20	0	98.4	76-116	0	
o-Xylene	19.19	1.0	20	0	96	76-127	0	
p-Isopropyltoluene	20.72	1.0	20	0	104	61-164	0	
sec-Butylbenzene	20.14	1.0	20	0	101	80-134	0	
Styrene	19.65	1.0	20	0	98.2	83-137	0	
tert-Butyl alcohol	115	20	100	0	115	70-130	0	
tert-Butylbenzene	19.21	1.0	20	0	96	70-130	0	
Tetrachloroethene	19.45	1.0	20	0	97.2	68-166	0	
Tetrahydrofuran	15.78	1.0	20	0	78.9	54-139	0	
Toluene	18.26	1.0	20	0	91.3	76-125	0	
trans-1,2-Dichloroethene	20.73	1.0	20	0	104	80-140	0	
rans-1,3-Dichloropropene	17	1.0	20	0	85	56-132	0	
rans-1,4-Dichloro-2-butene	13.17	2.0	20	0	65.8	46-118	0	
Trichloroethene	19.05	1.0	20	0	95.2	77-125	0	
Trichlorofluoromethane	19.15	1.0	20	0	95.8	60-140	0	
√inyl chloride	20.16	1.0	20	0	101	50-136	0	
Surr: 1,2-Dichloroethane-o	14 20.02	0	20	0	100	75-120	0	
Surr: 4-Bromofluorobenzer	ne 19.89	0	20	0	99.4	80-110	0	
Surr: Dibromofluoromethal	ne 21.06	0	20	0	105	85-115	0	
Surr: Toluene-d8	20.02	0	20	0	100	85-110	0	

QC BATCH REPORT

Client:

BB&E, Inc.

Work Order:

19090657

Project:

Batch ID: R271003	Instrument ID VMS11		Metho	d: SW82 6	60C						
MS Sar	mple ID: 19090657-05A MS				ι	Jnits: µg/I	L	Analys	is Date: §	9/20/2019 1	10:40 AN
Client ID: COL-GW-05	Run II	D: VMS11	_190919A		Se	qNo: 593	2649	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1,2-Tetrachloroethane	17.63	1.0	20		^		70 444	•	701 11 15		Quai
1,1,1-Trichloroethane	20.53	1.0	20		0	88.2 103	73-114	0			
1,1,2,2-Tetrachloroethane		1.0	20		0	99.2	75-130 75-130	0			
1,1,2-Trichloroethane	19.33	1.0	20		0	96.6	75-130	0			
1,1-Dichloroethane	20.18	1.0	20		0	101	68-142				
1,1-Dichloroethene	22.95	1.0	20		0	115	70-145	0			
1,1-Dichloropropene	19.54	1.0	20		0	97.7	75-135	0			
1,2,3-Trichlorobenzene	17.79	1.0	20		0	89	70-140				
1,2,3-Trichloropropane	17.87	1.0	20		0	89.4	75-125	0			
1,2,4-Trichlorobenzene	17.29	1.0	20		0	86.4	70-125	0			
1,2,4-Trimethylbenzene	17.94	1.0	20		0			0			
1,2-Dibromo-3-chloropropa		1.0	20		0	89.7 80.9	75-130	0			
1,2-Dibromoethane	19.93	1.0	20		0	99.6	60-130 67-155	0			
1,2-Dichlorobenzene	19.4	1.0	20		0	99.6		0			
1,2-Dichloroethane	19.77	1.0	20		0	98.8	70-130 78-125	0			
1,2-Dichloropropane	20.39	1.0	20		0	102	76-125 75-125				
1,3,5-Trimethylbenzene	18.52	1.0	20		0	92.6		0			
1,3-Dichlorobenzene	18.49	1.0	20		0	92.4	75-130 75-130	0			
1,3-Dichloropropane	18.83	1.0	20		0		75-130	0			
1,4-Dichlorobenzene	18.49	1.0	20		0	94.2	75-125	0			
2,2-Dichloropropane	13.04	1.0	20		0	92.4	75-130	0			
2-Butanone	21.94	5.0	20			65.2	43-150	0			
2-Chlorotoluene	18.94	1.0	20	0.8	0	105 94.7	55-150	0			
2-Hexanone	17.53	5.0	20		0	94.7 87.6	76-117 60-135	0			
1-Chlorotoluene	18.37	1.0	20		0			0			
1-Isopropyltoluene	18.59	1.0	20		0	91.8	80-125	0			
I-Methyl-2-pentanone	19.9	1.0	20		0	93 99.5	61-164	0			
Acetone	24.37	10	20	10.0		68.8	77-178	0			
Acrylonitrile	17.57	1.0	20		0	87.8	60-160	0			
Benzene	20.04	1.0	20		0	100	60-140	0			
Bromobenzene	19.36	1.0	20		0		70-130	0			
Bromochloromethane	19.67	1.0	20			96.8	80-125	0			
Bromodichloromethane	20.36	1.0	20		0	98.4 102	72-141 75-125	0			
Bromoform	15.52	1.0	20		0			0			
Bromomethane	8.58	1.0				77.6	60-125	0			
Carbon disulfide	21.2	1.0	20 20		0	42.9 106	30-185	0			
Carbon tetrachloride	19.35	1.0	20		0 n		60-165	0			
Chlorobenzene	18.98	1.0	20		0	96.8	65-140	0			
Chloroethane	21.02	1.0			0	94.9	80-120	0			
Chloroform	20.89	1.0	20 20		0	105	31-172	0			
Chloromethane	20.9		20		0	104	66-135	0			
is-1,2-Dichloroethene	31.47	1.0 1.0	20 20	0.49 11.24		102 101	46-148 75-134	0			

BB&E, Inc.

Work Order:

19090657

Project:

Batch ID: R271003	Instrument ID VMS11		Method:	SW8260C				
cis-1,3-Dichloropropene	17.2	1.0	20	0	86	70-130	0	
Dibromochloromethane	15.28	1.0	20	0	76.4	60-115	0	
Dibromomethane	20.61	1.0	20	0	103	79-126	0	
Dichlorodifluoromethane	24.12	1.0	20	0	121	20-120	0	S
Ethylbenzene	18.65	1.0	20	0	93.2	76-123	0	
Hexachlorobutadiene	15.45	1.0	20	0	77.2	70-155	0	
Hexachloroethane	13.59	1.0	20	0	68	50-124	0	
lodomethane	8.39	5.0	20	0	42	60-160	0	S
Isopropylbenzene	18.63	1.0	20	0	93.2	80-127	0	
m,p-Xylene	37.04	2.0	40	0	92.6	75-130	0	
Methyl tert-butyl ether	19.37	1.0	20	0	96.8	68-129	0	
Methylene chloride	21.99	5.0	20	0	110	72-125	0	
Naphthalene	16.52	5.0	20	0	82.6	55-160	0	
n-Butylbenzene	18.06	1.0	20	0	90.3	75-145	0	
n-Propylbenzene	17.79	1.0	20	0	89	76-116	0	
o-Xylene	18.94	1.0	20	0	94.7	76-127	0	
p-Isopropyltoluene	18.59	1.0	20	0	93	61-164	0	
sec-Butylbenzene	17.94	1.0	20	0	89.7	80-134	0	
Styrene	19.71	1.0	20	0	98.6	83-137	0	
tert-Butyl alcohol	86.23	20	100	13.75	72.5	70-130	0	
tert-Butylbenzene	17.68	1.0	20	0	88.4	70-130	0	
Tetrachloroethene	18.22	1.0	20	0	91.1	68-166	0	
Tetrahydrofuran	15.54	1.0	20	0	77.7	54-139	0	
Toluene	18.51	1.0	20	0	92.6	76-125	0	
trans-1,2-Dichloroethene	22.74	1.0	20	0.56	111	80-140	0	
trans-1,3-Dichloropropene	14.72	1.0	20	0	73.6	56-132	0	
trans-1,4-Dichloro-2-butene	9.49	2.0	20	0	47.4	46-118	0	
Trichloroethene	19.5	1.0	20	0	97.5	77-125	0	
Trichlorofluoromethane	18.23	1.0	20	Ó	91.2	60-140	0	
Vinyl chloride	22.14	1.0	20	0	111	50-136	0	
Surr: 1,2-Dichloroethane-d	20.73	0	20	0	104	75-120	0	
Surr: 4-Bromofluorobenzer	ne 20.05	0	20	0	100	80-110	0	
Surr: Dibromofluoromethal	ne 20.68	0	20	0	103	85-115	0	
Surr: Toluene-d8	19.96	0	20	0	99.8	85-110	0	

BB&E, Inc.

Work Order:

19090657

Project:

MSD Sa	mple ID: 1909065	57-05A MSD				U	Jnits: µg/L	_	Analysi	s Date: 9/	20/2019 1	1:02 A
Client ID: COL-GW-05		Run ID	VMS11	_190919A		Se	qNo: 593	2650	Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
1,1,1,2-Tetrachloroethan	е	18.17	1.0	20		0	90.8	73-114	17.63	3.02	30	
1,1,1-Trichloroethane		21.16	1.0	20		0	106	75-130	20.53	3.02	30	
1,1,2,2-Tetrachloroethan	е	20.05	1.0	20		0	100	75-130	19.83	1.1	30	
1,1,2-Trichloroethane		19.46	1.0	20		0	97.3	75-125	19.33	0.67	30	
1,1-Dichloroethane		20	1.0	20		0	100	68-142	20.18	0.896	30	
,1-Dichloroethene		22.37	1.0	20		0	112	70-145	22.95	2.56	30	
,1-Dichloropropene		19.06	1.0	20		0	95.3	75-135	19.54	2.49	30	
1,2,3-Trichlorobenzene		19.43	1.0	20		0	97.2	70-140	17.79	8.81	30	
1,2,3-Trichloropropane		19.34	1.0	20		0	96.7	75-125	17.87	7.9	30	
,2,4-Trichlorobenzene		17.68	1.0	20		0	88.4	70-135	17.29	2.23	30	
,2,4-Trimethylbenzene		17.8	1.0	20		0	89	75-130	17.94	0.783	30	
,2-Dibromo-3-chloropro	oane	17.3	1.0	20		0	86.5	60-130	16.18	6.69	30	
,2-Dibromoethane		19.37	1.0	20		0	96.8	67-155	19.93	2.85	30	
,2-Dichlorobenzene		19.33	1.0	20		0	96.6	70-130	19.4	0.361	30	
,2-Dichloroethane		19.71	1.0	20		0	98.6	78-125	19.77	0.304	30	
,2-Dichloropropane		20.81	1.0	20		0	104	75-125	20.39	2.04	30	
,3,5-Trimethylbenzene		18.34	1.0	20		0	91.7	75-130	18.52	0.977	30	
,3-Dichlorobenzene		18.89	1.0	20		0	94.4	75-130	18.49	2.14	30	
,3-Dichloropropane		18.79	1.0	20		0	94	75-125	18.83	0.213	30	
,4-Dichlorobenzene		19.42	1.0	20		0	97.1	75-130	18.49	4.91	30	
2,2-Dichloropropane		12.8	1.0	20		0	64	43-150	13.04	1.86	30	
2-Butanone		20.65	5.0	20	8.0		98.9	55-150	21.94	6.06	30	
2-Chlorotoluene		18.85	1.0	20		0	94.2	76-117	18.94	0.476	30	
2-Hexanone		17.39	5.0	20		0	87	60-135	17.53	0.802	30	
4-Chlorotoluene		18.07	1.0	20		0	90.4	80-125	18.37	1.65	30	
l-Isopropyltoluene		18.56	1.0	20		0	92.8	61-164	18.59	0.162	30	
1-Methyl-2-pentanone		19.95	1.0	20		0	99.8	77-178	19.9	0.251	30	
Acetone		23.57	10	20	10.		64.8	60-160	24.37	3.34	30	
Acrylonitrile		17.07	1.0	20		0	85.4	60-140	17.57	2.89	30	
Benzene		19.75	1.0	20		0	98.8	70-130	20.04	1.46	30	
Bromobenzene		18.91	1.0	20		0	94.6	80-125	19.36	2.35	30	
Bromochloromethane		18.77	1.0	20		0	93.8	72-141	19.67	4.68	30	
Bromodichloromethane		20.78	1.0	20		0	104	75-125	20.36	2.04	30	
Bromoform		15.39	1.0	20		0	77	60-125	15.52	0.841	30	
Bromomethane		9.78	1.0	20		0	48.9	30-185	8.58	13.1	30	
Carbon disulfide		21.53	1.0	20		0	108	60-165	21.2	1.54	30	
Carbon tetrachloride		20.21	1.0	20		0	101	65-140	19.35	4.35	30	
Chlorobenzene		18.6	1.0	20		0	93	80-120	18.98	2.02	30	
Chloroethane		20.3	1.0	20		0	102	31-172	21.02	3.48	30	
Chloroform		19.68	1.0	20		0	98.4	66-135	20.89	5.96	30	
Chloromethane		20.45	1.0				99.8		20.89			
cis-1,2-Dichloroethene		31	1.0	20 20	0.4 11.2		99.8 98.8	46-148 75-134	31.47	2.18 1.5	30 30	

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

QC BATCH REPORT

Batch ID: R271003	Instrument ID VMS11		Method:	SW8260C						
cis-1,3-Dichloropropene	18.18	1.0	20	0	90.9	70-130	17.2	5.54	30	
Dibromochloromethane	16.03	1.0	20	0	80.2	60-115	15.28	4.79	30	
Dibromomethane	20.8	1.0	20	0	104	79-126	20.61	0.918	30	
Dichlorodifluoromethane	23.07	1.0	20	0	115	20-120	24.12	4.45	30	
Ethylbenzene	18.53	1.0	20	0	92.6	76-123	18.65	0.646	30	
Hexachlorobutadiene	15.8	1.0	20	0	79	70-155	15.45	2.24	30	
Hexachloroethane	13.2	1.0	20	0	66	50-124	13.59	2.91	30	
lodomethane	13.19	5.0	20	0	66	60-160	8.39	44.5	30	R
Isopropylbenzene	18.23	1.0	20	0	91.2	80-127	18.63	2.17	30	
m,p-Xylene	37.08	2.0	40	0	92.7	75-130	37.04	0.108	30	
Methyl tert-butyl ether	18.76	1.0	20	0	93.8	68-129	19.37	3.2	30	
Methylene chloride	21.46	5.0	20	0	107	72-125	21.99	2.44	30	
Naphthalene	17.91	5.0	20	0	89.6	55-160	16.52	8.07	30	
n-Butylbenzene	18.4	1.0	20	0	92	75-145	18.06	1.87	30	
n-Propylbenzene	17.93	1.0	20	0	89.6	76-116	17.79	0.784	30	
o-Xylene	18.44	1.0	20	0	92.2	76-127	18.94	2.68	30	
p-Isopropyltoluene	18.56	1.0	20	0	92.8	61-164	18.59	0.162	30	
sec-Butylbenzene	18.16	1.0	20	0	90.8	80-134	17.94	1.22	30	
Styrene	19.81	1.0	20	0	99	83-137	19.71	0.506	30	
tert-Butyl alcohol	97.75	20	100	13.75	84	70-130	86.23	12.5	30	
tert-Butylbenzene	17.49	1.0	20	0	87.4	70-130	17.68	1.08	30	
Tetrachloroethene	18.32	1.0	20	0	91.6	68-166	18.22	0.547	30	
Tetrahydrofuran	16.1	1.0	20	0	80.5	54-139	15.54	3.54	30	
Toluene	18.33	1.0	20	0	91.6	76-125	18.51	0.977	30	
trans-1,2-Dichloroethene	21.73	1.0	20	0.56	106	80-140	22.74	4.54	30	
trans-1,3-Dichloropropene	15.11	1.0	20	0	75.6	56-132	14.72	2.61	30	
trans-1,4-Dichloro-2-butene	9.78	2.0	20	0	48.9	46-118	9.49	3.01	30	
Trichloroethene	19.72	1.0	20	0	98.6	77-125	19.5	1.12	30	
Trichlorofluoromethane	17.92	1.0	20	0	89.6	60-140	18.23	1.72	30	
Vinyl chloride	21.73	1.0	20	0	109	50-136	22.14	1.87	30	
Surr: 1,2-Dichloroethane-c	14 20.24	0	20	0	101	75-120	20.73	2.39	30	
Surr: 4-Bromofluorobenze	ne 19.68	0	20	0	98.4	80-110	20.05	1.86	30	
Surr: Dibromofluorometha	ne 21.12	0	20	0	106	85-115	20.68	2.11	30	
Surr: Toluene-d8	19.73	0	20	0	98.6	85-110	19.96	1.16	30	

The	following	samples	were	anal	yzed	in	this	batch	1:
-----	-----------	---------	------	------	------	----	------	-------	----

19090657-	19090657-
01A	02A
19090657-	19090657-
04A	05A
19090657-	19090657-
)7A	08A
19090657-	19090657-
10A	11A

19090657-03A 19090657-06A 19090657-09A 19090657-16A

MBLK

Client ID:

Analyte

LCS

Client ID:

Analyte

1,4-Dioxane

1,4-Dioxane

Surr: Toluene-d8

Surr: Toluene-d8

BB&E, Inc.

Work Order:

Batch ID: R271072a

19090657

Project:

Instru	ment ID VMS9		Metho	d: SW82 6	60B						
Sample ID:	VBLKW1-190920-R2	71072a			. (Jnits: µg/L		Anal	lysis Date:	9/20/2019	11:09 AM
	Run IE	D: VMS9_	190920A		Se	eqNo: 593 4	4258	Prep Date:		DF: 1	
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	U	1.0									
	10.95	0	10		0	110	74-124		0		
Sample ID:	VLCSW1-190920-R27	71072a			ı	Jnits: µg/L		Ana	lysis Date:	9/20/2019	10:23 AM
	Run IE	D: VMS9_	190920A		Se	eqNo: 593 4	4257	Prep Date:		DF: 1	
	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	38.65	1.0	40		0	96.6	70-130		0		
	10.16	0	10		0	102	74-124		0		
Sample ID:	19090657-04A MS				ι	Jnits: µg/L		Ana	lysis Date:	9/20/2019	12:12 PM
Run ID: VMS9_190920A			SeqNo: 5934260			Prep Date:		DF: 10)		
				SPK Ref			Control	RPD Ref		RPD	

QC BATCH REPORT

MS	Sample ID: 19090657	-04A MS				Uni	its: µg/L		Analy	Analysis Date: 9/20/2019 12:12 PM			
Client ID: COL-GW-	04	Run ID	: VMS9_	190920A		SeqN	No: 593 4	1260	Prep Date:		DF: 10		
Analyte		Result	PQL	SPK Val	SPK Ref Value	·	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
1,4-Dioxane		379.3	10	400		0	94.8	70-130	(ס			
Surr: Toluene-d8		97.5	0	100		0	97.5	74-124	()			

ACCUPATION AND ACCUPATION ACCUPATION ACCUPATION ACCUPATION ACCUPATION AND ACCUPATION ACCUPATION ACCUPATION ACCUPATION ACCUPATION ACCUPATION ACCUPATION ACCUP	Allalysis Date. 9	/20/2019 12:27 PM
Client ID: COL-GW-04 Run ID: VMS9_190920A SeqNo: 5934261 Prep I	Date:	DF: 10
	D Ref	RPD
Analyte Result PQL SPK Val Value %REC Limit V	/alue %RPD	Limit Qual
1,4-Dioxane 389.5 10 400 0 97.4 70-130	379.3 2.65	5 30
Surr: Toluene-d8 108 0 100 0 108 74-124	97.5 10.2	2 30

The following samples were analyzed in this batch:

19090657-04A

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270237	Instrument ID W	ETCHEM		Metho	d: SW903	34						
MBLK	Sample ID: MB-R270	237-R27023	7			L	Jnits: mg/	L	Ana	lysis Date: 9	/11/2019 1	11:00 AM
Client ID:		Run ID	: WETCH	HEM_19091	1G	Se	qNo: 590	9444	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide		U	1.0									
LCS	Sample ID: LCS-R270	237-R27023	37			ι	Jnits: mg/	L	Anal	ysis Date: 9	/11/2019 1	1:00 AM
Client ID:		Run ID	WETCH	HEM_19091	1G	Se	qNo: 590 9	9445	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide		8.52	1.0	10.75		0	79.3	56-102		0		
MS	Sample ID: 19090657	05CMS				U	Inits: mg/	L	Anal	ysis Date: 9	/11/2019 1	1:00 AM
Client ID: COL-GW-0	05	Run ID	WETCH	HEM_19091	1G	Se	qNo: 590 9	9664	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide		11.1	1.0	13.44		0	82.6	56-102		0		
MSD	Sample ID: 19090657	05CMSD				U	Inits: mg/ I	L	Anal	ysis Date: 9	/11/2019 1	1:00 AM
Client ID: COL-GW-0	05	Run ID:	WETCH	IEM_19091	1G	Sec	qNo: 590 9	9665	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide		10.65	1.0	13.44		0	79.3	56-102	11	.1 4.14	10	
The following samp	les were analyzed in th	is batch:	19 05	090657- iC								

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270362	Instrument ID WE	TCHEM		Metho	d: SW90 3	34					
MBLK	Sample ID: MB-R27036	2-R27036	2			Units: mg	ı/L	Ana	lysis Date:	9/12/2019 (2:00 PM
Client ID:		Run ID	: WETCH	IEM_19091	2K	SeqNo: 59	13325	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide		U	1.0								
LCS	Sample ID: LCS-R27036	62-R27036	62			Units: mg	/L	Anal	ysis Date:	9/12/2019 0	2:00 PM
Client ID:		Run ID	WETCH	IEM_19091	2K	SeqNo: 59 1	13326	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide		8.28	1.0	10.75		0 77	56-102		0		
The following samp	les were analyzed in this	batch:	19 06	090657- C	19 12	090657- C	19 13	090657- IC			

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270402	! Instrument ID I	C4		Meth	od: SW905	6A					
MBLK	Sample ID: MBLK-R					Units: m	g/L	Analy	sis Date: §	9/12/2019	10:41 AI
Client ID:		Run II	D: IC4_1 9	90912A		SeqNo: 59	914751	Prep Date:		DF: 1	
					SPK Ref		Control			RPD	
Analyte		Result	PQL	SPK Val	Value	%REG	C Limit	Value	%RPD	Limit	Qual
Chloride		U	1.0								
Sulfate		U	1.0								
LCS	Sample ID: LCS-R27	0402				Units: m	g/L	Analy	sis Date: 9	/12/2019	11:00 AM
Client ID:		Run II	D: IC4_19	00912A		SeqNo: 59	14753	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		9.345	1.0	10		0 93.5	88-110	()		
Sulfate		9.482	1.0	10		0 94.8	90-110	()		
MS	Sample ID: 19090657	-05B MS				Units: mg	g/L	Analys	sis Date: 9	/12/2019(04:26 PM
Client ID: COL-GW	-05	Run IE): IC4_19	0912A		SeqNo: 59	14777	Prep Date:		DF: 10	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		117.8	10	100	18.3	3 99.5	88-110	0	1		
Sulfate		130.3	10	100	34.6		90-110	0			
MS	Sample ID: 19090513	-36E MS				Units: mg	1/L	Analys	sis Date: 9	/13/2010 1	12-06 AM
Client ID:			: IC4_19	0912A		SeqNo: 59		Prep Date:	no Date. 3	DF: 10	
					SPK Ref		Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual
Sulfate		137	10	100	38.55	5 98.4	90-110	0			
MSD	Sample ID: 19090657	-05B MSD				Units: mg	ı/L	Analys	is Date: 9/	12/2019 0	4:45 PM
Client ID: COL-GW-	05	Run ID	: IC4_19	0912A	:	SeqNo: 59	14778	Prep Date:		DF: 10	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride		119.2	10	100	18.33	3 101	88-110	117.8	1.13	20	
Sulfate		131.8	10	100	34.61		90-110	130.3		20	
MSD	Sample ID: 19090513-	36E MSD				Units: mg	/L	Analys	is Date: 9/	13/2019 1	2:25 AM
Client ID:		Run ID	: IC4_190	912A	5	SeqNo: 59 1	4802	Prep Date:		DF: 10	
nalyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfate		137.9	10	100	38.55	99.3	90-110	137	0.64	20	
he following samp	les were analyzed in th	is batch:	05	090657-		90657-		90657-			

BB&E, Inc.

Work Order:

19090657

Project:

SSW Collis 2019 LTM Task 3

Batch ID: R270695B	Instrument ID LA	CHAT		Metho	d: E353.2	R2.0					
MBLK Sa	ample ID: MBLK2-R	270695B				Units: mg	/L	Analy	sis Date: \$	9/17/2019	10:40 AI
Client ID:		Run ID	: LACHA	AT_190917A		SeqNo: 592		Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Contro	RPD Ref Value	0/ PPP	RPD Limit	01
Nitrogen, Nitrate-Nitrite		U	0.020	Of IX var		MILO			%RPD		Qual
LCS Sa	ample ID: LCS2-R27	0695B				Units: mg	'n	Angly	sis Date: 9	147/0040	
Client ID:			LACHA	T_190917A		SeqNo: 592		Prep Date:	sis Date. s	DF: 1	10:41 AN
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control	100 · 100 · 100 · 100	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitrite		2.49	0.020	2.5		0 99.6	80-120) (Quai
MS Sa	mple ID: 19090657-	OSD MS				Units: mg			sis Date: 9	147/2040	14.02 AN
Client ID: COL-GW-05		Run ID:	LACHA	T_190917A		SeqNo: 592		Prep Date:	no Date.	DF: 1	11.02 AN
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitrite		2.413	0.020	2.5	0.00713	4 96.2	75-125	0			
MS Sa	mple ID: 19090893-0	1A MS				Units: mg/	n.	Analys	sis Date: 9	/17/2010 1	1-10 AM
Client ID:		Run ID:	LACHA	T_190917A		SeqNo: 592		Prep Date:	no Dato. J	DF: 2	11.13 AN
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitrite		10.31	0.040	2.5	7.34	2 119	75-125	0			E
MSD Sai	mple ID: 19090657-0	5D MSD				Units: mg/	L	Analys	is Date: 9	/17/2019 1	1:04 AM
Client ID: COL-GW-05		Run ID:	LACHA	T_190917A		SeqNo: 592 :		Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Nitrogen, Nitrate-Nitrite		2.561	0.020	2.5	0.007134	4 102	75-125	2.413	5.95	20	
MSD Sar	mple ID: 19090893-0	1A MSD				Units: mg/	L	Analys	is Date: 9/	17/2019 1	1:20 AM
Client ID:		Run ID:	LACHA	Г_190917А	, W	SeqNo: 592 2	2976	Prep Date:		DF: 2	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
litrogen, Nitrate-Nitrite		10.25	0.040	2.5	7.342		75-125	10.31	0.603	20	E
he following samples w	vere analyzed in this	s batch:	190 051	090657- 0		90657-		090657-	3.000	20	

Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 Fort Collins, CO

+1 970 490 1511 Holland, MI +1 616 399 6070

Chain of Custody Form

Page \ of Z Houston, TX +1 281 530 5656 Spring City, PA +1 610 948 4903

South Charleston, WV +1 304 356 3168

Middletown, PA +1 717 944 5541 Salt Lake City, UT +1 801 266 7700

York, PA +1 717 505 5280

COC ID:

					ALS Projec	t Manager:					ALS	Work	Order	#: [90	9~	257
	Customer Information		Pro	ect Informa	ition	er er ell general som kappt sätter er til kalk kan kall sig stagt sjär sjär sjär sätt.			Pai	ramet	er/Me	ethod	Reques	t for	Analy	sis	
Purchase Order	The second secon	Project I	Name SS	N Callis 2019	LTM Task 3		Α	VOC	\$								
Work Order	Military and the second of the	Project Nu	ımber				B Chloride, Nithte, Sulfate										
Company Name	BB&E, LLC	Bill To Com	npany BB	BB&E, LLC			С	Disso	ived Im	in and	Manga	nese					The test sense strangers
Send Report To	Kade Van Buskirk	Invoice	e Attn Acc	ounts Payable	e		D	Sulfic	le		. ,						
Address	235 East Main Street Suite 107	Add	dress	East Main St	reet		E		ane, Eth	nane, E	Eth e ne						
City/State/Zip	Northville, MI 48167	City/Stat		inville, MI 48	167		G	filtrat									
Phone	(248) 489-9636	Р	hone (248	3) 489-9636			н							to to water or some			and the second section of the second of
Fax	(248) 489-9646		Fax (248	3) 489-9646	***************************************		1				Professional Park of the Land	A. Mr. C. H. W. W.	20,000,000,000,000,000,000		,,,,,,,,	***************************************	
e-Mail Address		e-Mail Add	dress	N. C. M. S. C. S. C. S.	Antonio e sancial manti e are adver	#Acceptable and acceptable and and	J		/** ** ******								
No.	Sample Description	Date	Time	Matrix	Pres.	# Bottles	A	В	С	D	E	F	G	Н	1	J	Hold
1 COL-G	-W-G1	919119	0950	Con	1,8	3	K										
2 (OL-6	5W-02	919119	1020	GW	1,8	3	X		1			1					en e
	5W-03	9/9/19	1020	GW	1,8	3	K						_				
	W-04	919/14	1150	GW	1,8	U	K	•			<u>.</u>	X					
5 (OL-61	u-05	919119	1230	Gw	1,3,76	12	X	K	X	X	R	4				+	
5 COL-GW	i-us msimsp	9/9/19	1236	Gu	1,378		1		K		*******************	*					
6 (OL-GW		9914	1230	Gu	1,3,7,8	1	†	·	٨		÷						
F COL-GW	. 01	919119	1350	Gw	1,8	1	X					-		**********			
8 Col- GW	1.08	9/9/19	1430	cu	1, 8	3	K									1	
POL GV	٧٠٥٩	919119	1455	GW	1,8	3	α	1		*** *********		•			1		
	Van Busian Mil	in the	ent Method		quired Turnar Std 10 W			1	Other 2 WK	Days		4 Hour	Res	sults (Due Dat	te:	
Relinquished by: '	mi 916114	Time:	Received by	DEX			Notes:										
Relinquished by:	FED CX Pate 11 19	Time: 0930	Received by	Laboratery):)(Coo	ler ID	Coole	er Temp	7	7	e: (Check	One B	x Belov		
ogged by (Laboratory)	DES 9/11/19	Time:	Checked by (8-4°C	9-5035	5	2H,		.2~		Leveli	t Std QC ti Std QC/ V SW846/	Raw D	eta [TERP	CheckList Level IV

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse.

3. The Chain of Custody is a legal document. All information must be completed accurately.

9

Cincinnati, OH +1 513 733 5336

Everett, WA +1 425 356 2600 Fort Collins, CO +1 970 490 1511

+1 616 399 6070

Holland, MI

Chain of Custody Form

Page 2 of ?

Houston, TX +1 281 530 5656 Spring City, PA +1 610 948 4903 South Charleston, WV +1 304 356 3168

Middletown, PA +1 717 944 5541 Salt Lake City, UT +1 801 266 7700

York, PA +1 717 505 5280

COC ID: **ALS Project Manager:** ALS Work Order #: **Customer Information Project Information** Parameter/Method Request for Analysis Purchase Order **Project Name** SSW Collis 2019 LTM Task 3 **YOCs** Work Order **Project Number** Chloride, Nitrite, Sulfate Company Name BBSE, LLC Bill To Company BB&E, LLC Dissolved Iron and Manganese Send Report To Kacie Van Buskirk Invoice Attn Accounts Payable D Sultide 235 East Main Street 235 East Main Street Methane, Ethane, Ethene Address Address Suite 107 Suite 107 1,4Dioxane City/State/Zip Northville, MI 48167 City/State/Zip Northville, MI 48167 G hillrate Phone (248) 489-9636 Phone (248) 489-9636 H Fax (248) 489-9646 Fax (248) 489-9646 e-Mail Address e-Mail Address Sample Description Date Time Matrix Pres. # Bottles A В Hold COL- GW-10 919119 1600 GW 914/19 COL-GW-11 1630 [OL- GW-12 9/10/19 12 9/10/19 9110/19 9/10/14 2 X 8

10						
Sampler(s) Please Print & Sign	0.1	Shipment Method	Required Turnaround Time: (Check Box		I B - 14 5 5
Kacit Van Busking	Mr. Tri	Feede a	M	5 WK Days	Other	Results Due Date:
Relinquished by:	Date: Time: 130	Received by: FGD	6.4	Notes:	1 2 W DBys	
Relinquished by:	Pate 9 11 10 Time) (X)	Cooler ID	Cooler Temp.	QC Package: (Check One Box Below)
Logged by (Laboratory):	Date: Time:	Checked by (Laboratory		302	3.2~	Level III Std QC TRRP CheckList Level III Std QC/Raw Data TRRP Level IV
	3-H₂SO ₄ 4-NaOH 5	<u> </u>	Other 8-4°C 9-5035	bH13		Level IV SW346/CLP

Note: 1. Any changes must be made in writing once samples and COC Form have been submitted to ALS Environmental.

2. Unless otherwise agreed in a formal contract, services provided by ALS Environmental are expressly limited to the terms and conditions stated on the reverse. 3. The Chain of Custody is a legal document. All information must be completed accurately.

Copyright 2011 by ALS Environmental.

ALS Group, USA

Sample Receipt Checklist

Client Name: BBE		Date/Time Re	eceived: 11-Sep-19	9 09:30
Work Order: <u>19090657</u>		Received by:	<u>DS</u>	
Checklist completed by Shaw eSignature Matrices: Groundwater Carrier name: FedEx	11-Sep-19 Date	Reviewed by:	Chad Whilton eSignature	12-Sep-19 Date
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗸	No 🗆	Not Present	
Custody seals intact on sample bottles?	Yes	No 🗆	Not Present	
Chain of custody present?	Yes 🗸	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗸	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌		
Sample(s) received on ice? Temperature(s)/Thermometer(s): Cooler(s)/Kit(s):	Yes ✓ 3.2/3.2 c	No 🗆	SR2	
Date/Time sample(s) sent to storage:	9/11/2019	11:32:01 AM		
Water - VOA vials have zero headspace?	Yes 🗸		lo VOA vials submitted	
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌 N	I/A	
pH adjusted? pH adjusted by:	Yes	No 🗸 N	I/A 🗌	
Login Notes:				
Client Contacted: Date Contacted:	:	Person Co	ontacted:	
Contacted By: Regarding:				
Comments:				
CorrectiveAction:				

ATTACHMENT B

FIELD NOTES

67w	Kub onsite; piuc up and s	sout through Equipment. Compressor
m730	for the bradder pump is n	nissing.
0 830	commency water levels	
0900	Box check equipment	
0 (00	per sidirie ru	me All wells will be purged!
	actioned with the pension	Hic Pump du to the missing
0435	Part for the bludder pum	
0450	Comment pursu a mw-4	
,	Sumpu MW-475 for VO	
1020	Communa pure @ 1002-47	
1045	Sumper pr- 47 Per voes	
1050	Commenu purge @ PZ-48	
105	VE 98 Was drying up very	fust. The Well Was allowed te
1050	lecharge and men sumpred.	2.2
1130	Scampa Pr-48 for vol, (COL	- GW-05)
11,50	Communu purge @ mw-45	
1205	Sample mw-45 for yous all	
1236	Commenu purge @ mw	
1230	Sampa MW. 55 tov Vocs, 1	MNA, 14-dibrane (col-GW-Cs)
1230		Vols, mva, 1,4-dioxam (col-Gw-05 ms/msp)
1336	Sama MW 53 Dup for vol, ,	ma, hit-discour (COL- Gw-ole)
1350	Commence purge @ mw-sc	
1355	Sampu MW-56 for voc, (
1405	Dump ~ 15 gal purp wa	ter (a colli) wwtp
1430	Commenu purge @ MW-38	- ne\
1435	Sample mw-38 for vols (Col-	EM-007
	Sama mwys for vol,	
		(00 GW-04)
1600	Communic Purp @ mw-50 Sampu mw-50 for vocs (low	
1410	Commine Ruge @ MW-SOS	
1630		
	Sampe mw-so, for vol; (cot. Gw-11)	FIELD NOTES
	Cal Chance Equipment	Project SSW Collis LTM second semi-annual 2019
	Dump ~ 15 gar purge warer	alaha
1710	ICVB OFFSITE	Date 9 19 19
		Field RepKVB
		Page _ i _ of <u>i</u> _

1230 ship sampes and equipment

Pump Way not Utilized

_	A PROFESSIO	P 240,403,3030 T 248,489,3046
	0700	KUB onsite
	0710	Cal check Equipment
	0745	Comment purque @ MW42
	0815	Sample MW-42 For vocs, MNA, 1,4- dioxana (col-6w-12)
	0835	Commune pure @ MW-34
	0900	Sumple MW-34 For VOG, MNA, 1,4-dioxan (Col-GW-13)
	0420	commence purp @ my-39
	0945	Sample MW-39 for vous (OOL-GW-34).
	6445	Sampu MW-39 Dup for VOC, (COL-GW-15)
	1000	Cal check equipment
	1030	PUCK UP
	1100	DUMP ~ 10 GO DUM WATER @ COLLY WINTED

NOTE: Equippment blank was not collected since the bladder

FIELD NOTES

Project SSW Collis LTM second semi-annual 2019
--

Date <u>9110119</u>

Field Rep. _KVB_____

Page ____ of ____

MONITOR WELL STATIC WATER LEVEL FORM

Project Name: LTM SA 2 2019
Water Level Indicator ID # Sourcest
LOCATION: SSW Collis, Clinton Iowa

DATE: 9/<u>9</u>/19
Field Book # _ N *
Page # 1__ of _1__

Monitor Well Number	Total Well Depth	Well Screen Length	Time	Depth to Static Water Level
MW-38	9.95	5 ft	0732	4.44
MW-39	13.91	5 ft	0730	4.10
MW-50S	12.28	5 ft	0755	3.61
PZ-47	10.89	10 ft	0747	3.25
PZ-48	10.65	10 ft	0750	05.2
MW-34	31.6	5 ft	0740	5.34
MW-45	25.59	5 ft	0807	0.0
MW-47S	17.93	5 ft	0745	3.01
MW-50	24.77	5 ft	0757	3.54
MW-56	30	5 ft	0810	7.35
MW-42	50.2	5 ft	0737	480
MW-53	52.24	5 ft	20805	0.0
MW-43	99.38	5 ft	0734	21++

Note: total v	vell depth to be measured at time of	gauging.
Comments:		
Sampler	KVB	Observer

Equipment Calibration Daily Log

Date:	9/ 9/19	Project Name:	LTM SA2 2019
Project#:	02028025 Task 3	Recorded by:	KVB

WATER QUALITY	Model: \∫ SI P Equipment ID#:	10			Morning Calibration/ Check	Evening Check (one point only)	Additional Calib/Check (if needed)
METER	Parameter	Standard	Exp Date	Lot#	Time: 0836	Time:	Time:
	рН	7.0	12-31-19	86L 701	Initials:	Value:	
First Point Calibration (Auto)	Turbidity (NTU)	(00	12-2019	3804	(00	Value:	
	Conductivity (mS/cm)	1.413	10-10-19	13410	1,413	Value:	
	ORP MV	240	12-31-23	3086	240	Value:	
	DO (mg/L)	8.9-9. (ambient air)	NA	NA	8.91	Value: & G 1	
	рН	4.0	12-31-20	86L 214	Initials:	Value:	
Second Point	Turbidity (NTU)	750	11-2019	3793	750	Value:	
Calibration	Conductivity (mS/cm)					Value:	
Third Point	рН	10.0	12-4-10	804	Initials:	Value:	
Calibration	Turbidity	15.0	11-2019	3781	15-0	Value:	
urbidity Met	er Model and Equipm			3,804	0.10	0 11	

Additional Remarks: _____

Equipment Calibration Daily Log

Date:	9/10/19	Project Name:	LTM SA2 2019
Project#:	02028025 Task 3	Recorded by:	KVB

WATER QUALITY	Model: UST Pu	10			Morning Calibration/ Check	Evening Check (one point only)	Additional Calib/Check (if needed)
METER	Parameter	Standard	Exp Date	Lot#	Time:	Time:	Time:
	рН	7.0	12-31-19	86L 701	Initials:	Value: 7. O Z	
F:1 D-:-1	Turbidity (NTU)	100	12-2019	3804	100	Value:	
First Point Calibration (Auto)	Conductivity (mS/cm)	1413	10-6-19	13410	1.413	Value:	
(~0.0)	ORP	240	12-31-23	3086	240	Value: 241	
	DO (mg/L)	8.9-9. (ambient air)	NA	NA	8.92	Value: S, 91	
	рН	4.0	12-31-20	86L 214	Initials:	Value:	
Second Point Calibration	Turbidity (NTU)	750	12-2019	3793	750	Value:	
Canbration	Conductivity (mS/em)					Value:	
Third Point	рН	10.0	12-31-20	866	Initials:	Value: 10.03	
Calibration	Turbidity	15.6	11-7014	3781	15.0	Value:	

Turbidity Meter Model and Equipment ID: Hama HI

Additional Remarks:

	Site:	SSW	Collis					Welli ID	: MW-1	475				Dat	Date: 9/ 9 /19					
LOCATION	Project:	#: LTM S	SA2 2019	SSW C	Collis			Sample	ID: CC	L-GW	405	Gl		Rec	corded by:	KVB				
	Weather	Conditions &	Barometric	Pressure:	6004	Rain	, 30	0.05	Enlag											
	Purging	Equipment:	Devis	tuiti(T	Water l	evel Indicat	or: Sc	lins	+			PID Type/I	D#: \	۱A			
EQUIPMEN		uality Meter Ty	-					-	ng Equipmer					Turbidimet	er and #: Hay	nnia	+1)			
	Casing I	D (in): 飞						Well Vo	olume: ~	2.38	1461			Con	dition of We	11: Good				
	-	epth to Water (-	olume Purge		-	. 1		Wat	ter in Well Va	ault? Nº				
WELL INFO		ell Depth (ft):					-	-			-	from 1	Wel	II Mouth PID	KVB e/ID#: NA leter and #: Hanna +1) Vell: Good Vault? NC D (ppm): NA ppm): NA 6.0 7.0 1.5 2.0 Remarks (odor, clarity, etc) CULL CULL					
	_	olumn Thickne							ible Layer:			the state of the s	40)	Ami	bient PID (pp					
	Remarks												<u> </u>							
CASING	Casing I	D (in) [a]:		1.0)	1.5		2:0	2.2		3.0	4.0	4.3		5.0	6.0		7.0		
INFO								0.16 0.20 0.37			0.65	0.78	5	1.0	1.5		2.0			
Date	Time Water Level Volume Pumping Rate (L)				te (Lpm)	Temp	p (C)	pН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	OF	RP (mv)	Remarks (odor	, clarity,	etc)			
9/4/19	0935				Lou		13.8	40	7.32	0,5	54	1.02	127	_	020	Clear				
1	igue	3.00	ha		200		-	56	7.15	0,5	14	0.55	6.8	-	94,7					
	ches	3.08	100	^	200		14-	19	7.08	0,50	J	0.42	59	~0	15.5					
V	0950	3-08	100	1	200				7.04	0,50	20	0,40	57	-94.2						
				1																
	1			-			1													
ump Rate: <		Drawdown: C, +/-0.1 pH		Measure +/-3% Co		nins +/- 0.3 mg			or 3 consection of 3 consectin of 3 consection of 3 consection of 3 consection of 3 consection			/- 10 mV ORF)							
	/Time: 9 19	14.	# of	Container Volume	Containe Material	Proso	ervative	Filte (Y/N	r Pump	, Bailer, Valve	Di	uplicate (# of Containers)		(# of (Containers)		and Ana	lytical Meti		
aboratory ar	nd	•	3	40mL	VOA	_	ICI	N	Pı	ımp										
Chain-of-Cus				40mL	VOA		ICI ICI	N N		ump	-						ne Ethe	ene (MNA		
LS 192		-	2	250mL	Plastic		SO4	N		aunh Turih	+					Nitrite/Nitrate (21.0 (111117)		
177	010		1-	500mL	Plastic	112	001	N Pur								Chloride, Sulfa	te, Meta	als (MNAs		
			+	500mL	Plastic	Zr	nAc	N		ımp						Sulfide (MNAs)			

		Site:	S	SW Co	ollis				Welli	ID: 🛰 👂	2-45	?			Dat	te:	9/ 9 /19	
LOC	ATION	Project:			2 2019 S					ole ID: C	OL-GV	V- 01	-		Rec	orded by:	KVB	
		Weather	Conditio	ns & Baro	ometric Pres	sure: 💪	0°F . R	ain; 3	,005	Inly								
FOLI	IPMENT	Purging	Equipme	nt:PC~	rstu17	1			Wate	r Level Indica	ator: S	olin	22			PID Type/II	D#: N	IA
LQUI	I WILINI	Water Q	uality Me	ter Type	and #: Y	'SI			Samp	oling Equipme	ent: PC	vista	प्राप्ति		Turbidimete	er and #: Mai	nna HI	
		Casing I							Well	Volume: O	.305	gal			Con	dition of Wel	1: Godd	
				ater (ft):						Volume Purg					Wat	er in Well Va	ult? NO	
WEL	L INFO	Total We	ell Depth	(ft): 6.	89				Depth	of Pump Int	ake (ft):	Lux	7 from	bottom	Well	Mouth PID ((ppm):	NA
		Water C	olumn Th	nickness (ft):7-6C	į			Immis	scible Layer:			Yes	6	Amt	pient PID (pp	m):	NA
		Remarks	3:															
CA	SING	Casing II	O (in) [a]:			1.0		1.5	2.0	2.2	2	3.0	4	.0 4.3	}	5.0	6.0	7.0
IN	NFO	Unit Cas	ing Volun	ne (gal/lin	n ft) [b]:	0.04	(0.09	0.16	0.2	0	0.37	0.	65 0.7	5	1.0	1.5	2.0
Da	ate Time Water Level Volume (24 hr) (FTOC) Removed (L)			mping Rate	(Lpm) T	emp (C)	pН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	OR	RP (mv)	Remarks (odor,	clarity, etc)			
1/9/			3.3						5.23	6.90	0.	172	25,5	72.4	74	8 -724	CLECIA	
		1010			na		150	18	9.18	6.83			0.50	17.9		72.9		
		1015	3.4		ng		150	11	1.12	6.90			·44	12.2	- 7	10.4		
\		1020	3.4	U			120		eille	6.88			0.42	11.7		9.9		
						+												
			L															
ahiliza	ation:	:0.5 L/min +/-0.50	+10			asureme % Cond		is Stat - 0.3 mg/L D		for 3 consection 10% Tub (or			/- 10 mV OF	₽P				
ample	e Date/T	ime: 910	1/19	# of Contain	Cont	ainer	Container	Preservativ	Filt	ter Pump	, Bailer,	D	uplicate (# of		(# of C	ontainers)	Parameter(s) a	nd Analytical Meth
abora	atory and	1					Material VOA	HCI	(Y)		t Valve ump	+	Containers)			,	VOCs	-
hain-	of-Custo	ody #: 19201	C	3			VOA	HCI	N	I P	ump						1,4-Dioxane	
LS				2			VOA	HCI	N		ump							ne, Ethene (MNAs
ILO				+	250 500		Plastic Plastic	H2SO4	N		ump ump	-					Nitrite/Nitrate (Nitrite Sulfate	MNAs) e, Metals (MNAs)
T 500mL Plastic ZnAc					1		ump	+					Sulfide (MNAs)	e, INICIOIS (INITAS)				

	Site:	SS	SW Coll	lis					Welli ID	PZ-	48					Da	te:	9/9/	19	
LOCATION	1 10,000		M SA2						Sample	ID: CO		N-02	>			Red	corded by:	KVB		
	Weather	Condition	ns & Baron	netric Pr	essure:	650c	Ra	in, 300	in Ir	19					***************************************					
EQUIPMEN	Purging	Equipmer	nt: Pevi	Stul	m(Water L	evel Indica	ator: S	olins	;-				PID Type/I	D#:	NA	
EQUIPMEN			er Type ar						Sampling Equipment: Perist winc								Turbidimet	er and #:	Hann	211)
	Casing I	D (in): \	. W						Well Vo	lume: ~	0.21	8				Cor	ndition of We	II: C-G	5.4	
			iter (ft): 5	.20					Total Vo	olume Purg	ged: ~ (5.50xa	1			-				
WELL INFO	O Total We	ell Depth (ft): 10.	U5										-						
	Committee or other party of the last of th	olumn Thi	15				Depth of Pump Intake (ft): Ly A from bottom Immiscible Layer: Yes								bient PID (pp	PID (ppm): NA 5.0 6.0 7.0 1.0 1.5 2.0 mv) Remarks (odor, clarity, etc)				
	Remarks	S :							1	· ·										
CASING	Casing II	D (in) [a]:		1	1:0	T	1.5		2.0	2.2	2	3.0	4	.0	4.3		5.0		6.0	7.0
INFO	Unit Casing Volume (gal/lin ft) [b]: 0.04 0.09							0.16					-							
Date	Time (24 hr)	Water (FTC		Volum		Pumping Rate (Lpm)			mp (C)	pН	Cond	(mS/cm)	DO (mg/L)) Tu	rb (NTU)	0	RP (mv)	Remark	s (odor, cla	rity, etc)
9/4/19	1045	6	10	VIC		150)	16	.80	7.25	0.5	578	1,110	3	6.2	-	38.4	Wes	1 600	u (
1/	1035	10.0		na		150		-	.77	7.20	-	Tele	0,98	-	7.7	-(10.2		THE RESERVE OF THE PARTY OF THE	CONTRACTOR OF THE PARTY OF THE
												•	•				,	fers	,	
																	-			
					_									-						
			-		-				-		-			+						
	-				_						-			+						
		-	_	***										+						
ımp Rate: <	:=0.5 L/min	Drawdo	wn: <0.33	3 ft N	leasuren	nents: 5	mins	Stabil	ization fo	r 3 consec	cutive re	eadings								
abilination	110 50	1/04	pH,	+1	-3% Con	d,	+/- 0.	3 mg/L DC), +/-10	% Tub (o	r < 50 N	ITU), +	- 10 mV OF							
Sample Date/	Time: 9	19814	# of Containe		ntainer olume	Contai		Preservative	Filter (Y/N)		, Bailer, t Valve		uplicate (# of Containers)		MS/MSD	(# of (Containers)	Parame	ter(s) and	Analytical Me
.aboratory an	nd		3	-	10mL	VOA		HCI	N	Р	ump							VOCs		
unain-of-Cust	nain-of-Ćustody #: \Q 2 \cdot\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				HCI HCI	N		ump ump	-						1,4-Diox		Ethene (MNA			
ALS			1	-	50mL	Plast		H2SO4	N		ump								itrate (MN/	
			4		00mL	Plast	tic		N	P	ump							Chloride	, Sulfate, M	Metals (MNAs
			4	5	00mL	Plastic ZnA		ZnAc	N	P	ump							Sulfide	(MNAs)	

		Site:	SS	SW Colli	S				Well	D: MW-	45				Dat	Date: 9/ 9 /19					
LOC	CATION				2019 SSV					le ID: C	DL-GI	N-64			Reco	orded by:	KVB				
		Weather	Condition	ns & Barom	etric Pressu	e: 70°)	OVERCUST	30	05 in	174											
50 11	UDMEN	Purging	Equipmer	nt: Pevis	ruitil				Water	Level Indica	itor: 🔾	alinst	-			PID Type/	ID#:	NA			
EQU	IPMEN			er Type and						ling Equipme						Turbidime	ter and #:		. H1		
		Casing I	D (in): 7	in					Well V	/olume: ^ (1.00	C 1			Cone	dition of We					
				ater (ft): O-	0				Total	Volume Pura	ed: ^	gai			_	er in Well V					
WEI	LL INFO	_		ft): 25						Total Volume Purged: ~3 GEL Water in W Depth of Pump Intake (ft): L4.6 Rom by Horn Well Mouth											
		Water C	olumn Thi	ickness (ft):	25.59					cible Layer:			Yes	Amb	ent PID (pp	t PID (ppm): NA					
		Remark	S:																		
CA	ASING	Casing I	D (in) [a]:			1.0	1.5	1	2.0)	2.2	2	3.0	4.0	4.3	3	5.0		6.0	7.0		
I	INFO Unit Casing Volume (gal/lin ft) [b]: 0.04 0.09							018	0.2	0	0.37	0.65	0.7	5	1.0		1.5	2.0			
D	ate	Time Water Level Volume (24 hr) (FTOC) Removed (L) Pumping Rate (Lpm)		Rate (Lpm)	Ter	np (C)	рН	Cond	(mS/cm)	DO (mg/L)	Turb (NTU)	OR	P (mv)	Remarks	(odor, cla	rity, etc)					
9/9/19		1130	01			700	2	17	5.07	7.39 6		605	0,07	10-7	17	.9	Clean	/			
		1135	5 0.0		74	200		12	79	7.20	0	60	644	6.2		٠.ن					
		1140	0,0	<u> </u>	NU	200		15	.80	7.17	+	100	0.30	5.7	29						
	-	1145	0.0		Ur	200		-	77	7.18	0.1		0.30	52	20						
	V	1170	00		nu	200	/	12.	78	7.18	0.1	200	0.31	5.1	29	,7					
	Rate: <	=0.5 L/min +/-0.50	Drawdo C, +/-0.1		ft Measu		5 mins +/- 0.3 mg			for 3 consections for 3 consec			/- 10 mV ORF)							
Samp	ole Date/	Time: 9141	19	# of Container	Contain	er Conta	iner Proce	rvative	Eil+	er Pump	, Bailer, t Valve	Di	uplicate (# of Containers)		(# of C	ontainers)	Paramete	er(s) and A	Analytical Metho		
abor	ratory an	d		(3	40mL	VO	A H	ICI	N	P	ump						VOCs	200			
Chain-of-Custody	10uy #: \9 74	010	3	40mL	VO		ICI ICI	N	-	ump ump	-					1,4-Dioxa Methane		Ethene (MNAs)			
LS				1-	250ml			SO4	N		ump						Nitrite/Ni	trate (MNA	(s)		
				+	500mL				N	P	ump								Metals (MNAs)		
				+	500ml	Plas	tic Zr	nAc	N	P	ump						Sulfide (I	MNAs)			

	Site:	S	SW Collis					Welli II	D: MW-	53				Da	te:	9/ 9/1		
LOCATION	Project:	#: LT	M SA2 20	19 SSW	Collis				e ID: CC		N-05			Red	corded by:	KVB		
	Weather	Conditio	ns & Barometi	ic Pressure	70° F	Guercas)))	30.09	5 inla	19				-				
EQUIPMEN'	Purging	Equipme	nt: Peris	1411		/		Water	Level Indica	tor: Sc				PID Type/		NA		
	Water Q	uality Me	ter Type and #	YSI				Sampli	ng Equipme	ent: P	enstu	inil		Turbidime	ter and #: +	Jany	WHI	
	Casing II	D (in):	2.50					Well V	olume: ~ /olume Purg	8.7	540	\		Cor	ndition of We	ell: 600	la	
	Initial De	pth to Wa	ater (ft): 0 - 0	1				Total V	olume Purg	ed: ~	3441			Wa	ter in Well V	ault? N	ù	
WELL INFO	Total We	ell Depth	(ft): 52.21	1				Depth	of Pump Inta	ake (ft):	LUA	from b	outton	We	II Mouth PID	(ppm):	NA	
	Water Co	olumn Th	ickness (ft): C	12.24					ible Layer:				(40)	Am	bient PID (pp	om):	NA	1
	Remarks	S:																
CASING	Casing II	O (in) [a]:		1	1.0	1.5	T	2.0	2.2	2	3.0	4.0	4.3	3	5.0		6.0	7.0
INFO								0.16	0.20	0	0.37	0.65	0.7	5	1.0		1.5	2.0
Date	Date Time Water Level Volume (24 hr) (FTOC) Removed (L) Pumping Rate (Lpm)					Tem	p (C)	рН	Cond	(mS/cm)	DO (mg/L)	Turb (NTU)	OF	RP (mv)	Remarks	(odor, cla	rity, etc)	
/ ^{\alpha} /19	1205	0		W	200		17.	71	7.17	2	27	0.87	7.7	-5	8.7	Clea.	_	
	1210	0.0		u	200		17.	41	7.36	6.5	22	0.30	2.7	-6	74.8			
	1215	0,0	, v	a	70e			57	7.37	0.3	527	0.27	2.1		JU-7			
	1220	0.0		u	2000			47	7.37		522	627	7.0		de. 4			
	1225	0.0		4	200		1.5	.45	7.38	0. 5	523	0.74	2.)		04.7			
	1730	0-0	> V	d	200		12.	48	7.34	0. 3	157	0.21	2.1	- 5	9.7			
										-								
mn Data: <	=0.5 L/min	Drawdo	wn: <0.33 ft	Mongur	omonte: f	mine	Ctabili-	ration fo	or 3 consec	Lutivo F	oodings							
abilization:	+/-0.50	, +/-0.		+/-3% C		+/- 0.3 mg			0% Tub (or			/- 10 mV ORF						
ample Date/	Time: 919	119	# of Containers	Container Volume	Conta Mate		rvative	Filte (Y/N		, Bailer Valve		uplicate (# of Containers)	MS/MSD	(# of 0	Containers)	Paramete	er(s) and A	Analytical Meth
aboratory an	d			40mL	VO.	A H		N	Pt	ump		(3)		0		VOCs		
hain-of-Cust	ody #:192010	j	(3)	40mL	VO.			N		ump		(3)	(8		1,4-Dioxa		Ethono (MANA -
LS				40mL 250mL	Plas			N N		nmb	-	3	1	(1)				
0 500mL Plastic				N Pump				W		5		Chloride,	marks (odor, clarity, etc) P(4+ rameter(s) and Analytical Method					
			W W	500mL	Plas	tic Zn	Ac	N	Pı	ump		U		U		Sulfide (N	MNAs)	

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\2nd Semi-annual Sampling Event\01- Preparation\Field Forms\Monitoring Well Sample Collection.docx April 2019 Page 1 of 2

of coinces tour-con-oc

Dus)

	Site:	S	SW C	ollis				W	elli ID:	MW-	56					Da	te:	9/9	/19	
LOCATION	· · · · · · · ·				9 SSW					: CC		1-07				Rec	corded by:	KVE	3	
	Weather	Conditio	ns & Ba	rometric	Pressure	7004,0	vercus	+, 30	.05,	nlag										
EQUIPMEN	Purging	Equipme	nt: PC	inista	11tic			W	ater Lev	vel Indicat	tor: So	linst	,				PID Type/	ID#:	NA	
EQUIPMEN					YSI			Sa	ampling I	Equipmer	nt: Der	TStai	ni				Turbidime	ter and	#: Hann	ia tll
	Casing I	D (in):	2:5							me: ~ `						Cor	dition of We			
	A CONTRACTOR OF THE PARTY OF TH	epth to Wa		730						ıme Purge						_	ter in Well V		CONTRACTOR OF THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	
WELL INFO		ell Depth						De	enth of P	Pump Inta	ke (ft)	ger 1	6	00.	winom	+	Mouth PID			Λ
	OF REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN	olumn Th								e Layer:	ino (ri).		Yes		10)	+	bient PID (pp		NA NA	
	Remarks			(,. 2	,,,				ooibic	, Lujoi.						1 74111	DICITE ID (P)	, , , , , , , , , , , , , , , , , , ,	11/	1
CASING	Casina	D (in) [a]:			1 1	.0	1.5	2.0	T	2.2		3.0		4.0	4.3	1	5.0		6.0	7.0
INFO		ing Volun		in ft) [b]:			0.09	0.1	-	0.20		0.37	+	0.65	0.7		1.0	+	1.5	2.0
Date	Time	Water			ume	Pumping Rate	e (Lpm)	Temp (0		рН	Cond (r	mS/cm)	DO I	(mg/L)	Turb (NTU)	OF	RP (mv)	Rema	arks (odor, cla	arity, etc)
9/9/19	(24 hr) 1330	(FTC		Kemo	ved (L)	200	(13.3	-	7.10	0.5		0.		7.2		08-9	Ci	lar	
37 713	1335	2,1		Ni		200		13.1		1.10			0.	-	5.6		05.9	CL	244	
	1340	2.7		n		200		13.3	-	6.97			٥.	-	3.3		18.2			
	1345	2.7		nu		200		13.2	_	9.98	0.5			23	3.1		05.4			
	1350	2		no		200		13.2	_	.98	0.51		0.	-	3.0		106.7			
Pump Rate: < Stabilization:		Drawdo , +/-0.1			Measure +/-3% Co		ns S /- 0.3 mg/	Stabilizati L DO.		Consection Tub (or			/- 10 m	nV ORP						
Sample Date/	Time: 919	119	# c	of	Container Volume		Preserv	ativo	Filter (Y/N)	Pump,	Bailer, Valve	Du	uplicate	(# of	MS/MSD	(# of C	Containers)	Parar	meter(s) and /	Analytical Method
Laboratory an	nd		(3		40mL	VOA	НС		N		imp							VOC		
Chain-or-Cust	tody #: 1920	10	-3		40mL	VOA	HC		N		imp imp	-			-				Dioxane ane Ethane	Ethene (MNAs)
ALS			1	-	250mL	Plastic	H2S		N	Pu	ımp							Nitrite	e/Nitrate (MNA	As)
			4		500mL	Plastic Plastic	ZnA		N N		imp									Metals (MNAs)
					SOUTIL	Plastic	ZnA	IC	IN	I PU	ımp							Sullo	de (MNAs)	

Sulfide (MNAs)

	Site:	SS	SW Collis					Welli	D: MW-	38				Da	te:	9/9	/19	
LOCATIO	Project:	#: LT	M SA2 20	19 SSW	Collis			Sampl	e ID: C	OL-GV	V- 08			Rec	corded by:	KVB		
	Weather	Condition	s & Baromet	ric Pressure	e: vain	, 6505	, 30	2.05	inly									
EQUIPMEN	Purging	Equipmen	t: pens	taitic				Water	Level Indica	ator: S	olins=				PID Type/	'ID#:	NA	
EQUIT MEN			er Type and					Sampl	ing Equipme	ent: Pe	いっちゃ	unic			Turbidime	ter and #	Hunne	u HI
	Casing I	D (in):	lin					Well V	olume: ~	0 88 0	191			Cor	ndition of We	ell:	Gove	
	Initial De	epth to Wa	ter (ft): 4	14				Total \	/olume Purg	ged: ~7	Lace!			Wa	ter in Well V	ault?	NO	
WELL INF	O Total We	ell Depth (f	ft): 9.9	5								from 1	oerom	We	I Mouth PID	(ppm):	NA	
	Water C	olumn Thi	ckness (ft):	5.51					cible Layer:				No	Am	bient PID (pp	pm);	NA	1
	Remarks	s:																
CASING	Casing	D (in) [a]:			1.0	1.5		(2.0)	2.2	2	3.0	4.0	4.3	3	5.0		6.0	7.0
INFO	Unit Cas	ing Volum	e (gal/lin ft) [b]: (0.04	0.09		0.16	0.20	0	0.37	0.65			1.0		1.5	2.0
Date	Time (24 hr)	Water I		olume noved (L)	Pumping	Rate (Lpm)	Terr	np (C)	pН	Cond ((mS/cm)	DO (mg/L)	Turb (NTU)	OF	RP (mv)	Remar	ks (odor, clai	rity, etc)
9/9/19	1405	4.5		nu	20	υ	19	.37	7.04	1.0	72	0.71	2.9	-7	-4.8	CHE	Cer	
	1410	4.5	2 r	14	200	2	19	.59	6.96	1.0	79	0.40	2.6	-7	5.3			
	1418	4.5	2 r	na	200		19	.63	6.94	1.0	90	0.26	2.2	,	32.0			
	1420	4.5		na	200	,	19	11.	6.92	1.10	01	0.36	2.2		35.4			
	1425	4.5		ra	200)	10	1.20	6.91	1-1	11	6.30	2.1	-	39.9			
V	1930	4.57	n	·C	201		10	4,19	6.91	111	7	0.31	7-1		42.7			
	-						-			-								
							1											
	=0.5 L/min								or 3 consec									
tabilization: Sample Date/	7:	C, +/-0.1	pH, # of	+/-3% C	manufacture and the second	+/- 0.3 m	g/L DO ervative	T:14-	0% Tub (or Pump	r < 50 N , Bailer,		/- 10 mV ORF		(# . 1.6	\\.		-1(-) 1	
Laboratory ar	130 419	119	Containers	Volume		iai		(Y/N) Foot	t Valve		Containers)	M2/M2D	(# OT C	Containers)		eler(s) and A	Analytical Method
	ia tody #: 192	010	3	40mL 40mL	VOX		HCI HCI	N N		ump ump			_			VOCs	xane	
			2	40mL	VO	4	HCI	N	Pi	ump						Methar	ne, Ethane, E	Ethene (MNAs)
ALS		-	+	250mL 500mL	Plast Plast		2504	N		ump	-						Nitrate (MNA	
		-	-	500mL	Plasi		- ^ -	IN N		ump	-		-				e, Suitate, N	Metals (MNAs)

Sulfide (MNAs)

	Site:		SW Coll				Well	ID: MV	v-43	2			Dat	te:	9/9/19		
LOCATION	1 10,000.			2019 SSW			Samp	ple ID: C	OL-GW	1-09			Rec	orded by:	KVB		
	Weather	Conditio	ons & Barom	etric Pressure	1950x ; 3	0.05 1	niria	overter	15-								
EQUIPMEN	Purging	Equipme	ent: Den	Music	-		Wate	er Level Indica	ator: So	olinst				PID Type/I	D#:	NA	
EQUIPMEN	Water Q	uality Me	eter Type an	d#: YSI			Samp	pling Equipme						Turbidimet	ter and #: Hu	nnu tl	1
	Casing II	D (in): 2	in				Well	Volume: ~	15.9 6	ra \			Con	dition of We			
	Initial De	pth to W	ater (ft): L	187				Volume Purg			. 1		Wat	er in Well Va	ault? N°		
WELL INFO	O Total We	ell Depth	(ft): 99,	38			Depth	h of Pump Int	ake (ft):	Luit	from	borrom	Wel	Mouth PID	(ppm):	NA	
	Water Co	olumn Th	nickness (ft)	94.38				scible Layer:				0		pient PID (pp	om):	NA	
	Remarks	i .											-				
CASING	Casing II) (in) [a]:			1.0	1.5	(2.0)	2.2		3.0	4.0	4.3	1	5.0	6.0		7.0
INFO	Marie Commission of the Commis		ne (gal/lin ft			0.09	0.16	0.2		0.37	0.65			1.0	1.5		2.0
Date	Time (24 hr)	Water (FT		Volume emoved (L)	Pumping Rate	(Lpm)	Temp (C)	pН	Cond (r	mS/cm)	DO (mg/L)	Turb (NTU)	OR	RP (mv)	Remarks (odo	r, clarity, etc)
9/9/19	0435	618		na	200		17.68	7.66	0.55	5	0.28	1.6	-13	303	Clear		
1	1440	414	7	na	700	1	7.78	7.70	0.5	47	0.20	1.2		31.5			
	1445	419	7	na	200		17.90	7.73	0.5	41	0.17	1.1	-1	30.9			
	1450	LIF	1	na	200		7.89	7.75	0.5	38	0.15	1.)	- 1	27.0			
V	1455	LIF	+	nu	200		1789	7.76	0.5	37	0.13	1-0	- 1	3.05			
	-								-	-							
	-		-														
ump Rate: <	=0.5 L/min	Drawdr	own: <0.33	ft Measur	ements: 5 mir	ns Sta	bilization	for 3 consec	cutive rea	adings							
tabilization:	+/-0.50		1 pH,	+/-3% C	ond, +/	- 0.3 mg/L	DO, +/-	10% Tub (or	r < 50 N	TU), +/	- 10 mV ORF)					
Sample Date/	Time: 919	118	# of Container	Container s Volume	Container Material	Preservat	tive Filt		, Bailer, t Valve		plicate (# of ontainers)	MS/MSD	(# of C	ontainers)	Parameter(s)	and Analytic	al Metho
Laboratory an	id		(3)	40mL	VOA	HCI	N	N Pi	ump						VOCs		
Chain-of-Cust	tody #: 1012010		3-2-	40mL 40mL	VOA	HCI HCI	N		ump ump	-					1,4-Dioxane Methane, Etha	ne Ethene	(MNAs)
ALS			4	250mL	Plastic	H2SO4	- N	N Pi	ump						Nitrite/Nitrate ((MNAs)	
			1-	500mL	Plastic	7.4	N		ump						Chloride, Sulfa	ate, Metals (MNAs)

Sulfide (MNAs)

	Site:	SSW	Collis			Welli ID:	Mw-	30				Dat	e:	9/ 9 /19	
LOCATIO	N Project:	#: LTM S	SA2 2019 SSV	V Collis				DL-GW-	10			Rec	orded by:	KVB	
	Weather	Conditions &	Barometric Pressu	re: 7005 0	vereus.	30.0	os in	He							
EQUIPME	NT Purging	Equipment: 5	Cristulke	_		Water Le	vel Indica	tor: Solin	15-				PID Type/	ID#:	VA
24011 1112	Water Q	uality Meter T	ype and #: YS	SI		Sampling	Equipme	ent: pevi	Star	1			Turbidime	ter and #: Hu	nna HI
		D (in): Z:~				-		3.4 gal				Con	dition of We	ell: Geor	
		epth to Water (Total Vol	ume Purg	ed: ~3.5	yel			Wate	er in Well V	ault? we	
WELL IN	Total We	ell Depth (ft):	24.77			Depth of	Pump Inta	ake (ft):	157 7	rom b	mon	Well	Mouth PID	(ppm):	NA
			ess (ft): 21.23			Immiscibl	le Layer:		Yes	1	©	Amb	ient PID (pp	om):	NA
	Remarks	S: 													
CASING		D (in) [a]:			1.5	2.0	2.2		3.0	4.0	4.3		5.0	6.0	7.0
INFO	Unit Cas	ing Volume (g	al/lin ft) [b]:	0.04	0.09	0.16	0.20	0	0.37	0.65	0.7	5	1.0	1.5	2.0
Date	Time (24 hr)	Water Leve (FTOC)	Volume Removed (L)	Pumping Rate	(Lpm) Te	mp (C)	рН	Cond (mS/	cm) DO	O (mg/L)	Turb (NTU)	OR	P (mv)	Remarks (odor	, clarity, etc)
9/9/19	1520	3,55	Nu	200	18	5.74	8.24	0.20	7 1	-53	1.4	- 3	0-9	clear	
	1525	3.50	na	200), c	5.95	87-93	0.122		10.0	1.4	-3	3-4		
	1530	3.51	na	200	()		7.00	0.80	14 (3.25	1.4	1:	1-1		
	1535	3.58	na	200	1.	5.50	6.98	1.03	7	0.30	1.4	18	.]		
	1540	3.58	na	200	1	5.50	6.97	1.63	1 0	1,24	1.9	ن . د	47		
	1545	3.58	na	200	i	5.71	7.01	1,730	, .	15.0	1.4	- 4	19.8		
	1550	3.58	na	201		5.41	7.03	1.740	9 0	10	1.3	-	55.7		
	1555	3.58	na	200	15	5.63	7.04	1.785	0	.19	1,3		56.3		
$ \bigvee$	1600	3.58	na	200	1	5.54 -	7.04	1.80	5 0	.18	1.5	- 3	57.4		
Pump Rate: Stabilization:		Drawdown: , +/-0.1 pH	<0.33 ft Meas +/-3%		s Stabil			cutive readir) mV ORP					
Sample Date		Lid	# of Contain	ner Container	Preservative	Eiltor	Pump	, Bailer, Valve	Duplic	ate (# of ainers)	MS/MSD	(# of C	ontainers)	Parameter(s) a	and Analytical Metho
Laboratory a	and		3 40ml		HCI	N		qmp						VOCs	
Chain-of-Cu	stody #: 1920	17	3 40ml 2 40ml		HCI HCI	N N		ımp						1,4-Dioxane	ne, Ethene (MNAs)
ALS			↑ 250m		H2SO4	N		amp						Nitrite/Nitrate (
			T 500m			N		ımp							ite, Metals (MNAs)

Pump

	Site:	S	SW Collis					Welli fi	D: MW	-50	5			Da	nte:	9/9		
LOCATIO	1 10,000		TM SA2 20					Sampl	e ID: C	OL-G	N- II			Re	corded by:	KVB		
	Weathe	r Conditio	ons & Baromet	ric Pressure:	7004,0	Vence	St, 3	0.05	- in IH	1								
EQUIPMEN	Purging	Equipme	ent: Pouist	altic				Water	Level Indica	ator: Sc	ninst				PID Type/	'ID#:	NA	
EQUIT ME	Water C	Quality Me	eter Type and	YSI				Sampl	ing Equipme	ent: P	evisto	11116			Turbidime	eter and #	Hanne	a +11
	Casing	ID (in): '	2:50					Well V	′olume: ∼	1.389	a)			Co	ndition of We	ell: (5009	
	Initial D	epth to W	ater (ft): 3 - [91				Total \	/olume Purg	ged: ~	lager 1			Wa	iter in Well V	ault?	20	
WELL INF	O Total W	ell Depth	(ft): 12.2	6				Depth	of Pump Int	ake (ft):	Luta	from bo	nom	+	II Mouth PID		NA	
	Water C	Column Th	nickness (ft):	B.67					cible Layer:				(6)	Am	bient PID (p	pm):	NA	
	Remark	S:																
CASING	Casing	ID (in) [a]:		1	.0	1.5	TT	2.0)	2.2	2	3.0	4.0	4.	3	5.0		6.0	7.0
INFO	Unit Cas	sing Volur	me (gal/lin ft) [o): 0.	04	0.09		0.18	0.2	0	0.37	0.65			1.0		1.5	2.0
Date	Time (24 hr)	Water (FT		olume loved (L)	Pumping Rat	e (Lpm)	Terr	np (C)	pН	Cond	(mS/cm)	DO (mg/L)	Turb (NTU)	0	RP (mv)	Remar	ks (odor, clar	rity, etc)
9/9/19	JULO	3.6	13 h	4	Zoc		(7.	15	7.70	0.9	37	0දිව	1.0	-70	l-le	Cie	uv	
1	1415	3.0	23	na	Zoc		17.1	4	7.18	0.	975	0.41	1.4	-7	8.4			
	1420	3.4	4 ,	ia	200		17.	12	7.14	de.	900	0. 28	1.2	-	80.1			
	1625	3.6	5 r	14	700		17.	10	7.16	6.0	P50	0.29	1,)		77.]			
V	1430	3.4.	5 1	en	200		17.	11	7.10	1.0	940	0.75	1.1	-7	14.4			
	-	+																
ma Bata:	=0.5 L/min	Drawde	oun: <0.22 ft	Manaura	monto, E mi		Chabilia		2									
abilization:	+/-0.50	C. +/-0.		+/-3% Co	ments: 5 mi	/- 0.3 mg			or 3 consection 3			/- 10 mV ORF						
Sample Date	Time: 919	119	# of Containers	Container Volume	Container Material		vative	Filte (Y/N	er Pump	, Bailer, Valve	Di	uplicate (# of Containers)		(# of (Containers)	Param	eter(s) and A	Analytical Metho
aboratory ar	nd		3	40mL	VOA	Н		N	P	ump						VOCs		
nain-of-Cus	tody #: \97	CIL	2	40mL 40mL	VOA VOA	H		N		ump	-					1,4-Dic		"thana (141) 4 - 1
LS			+	250mL	Plastic	H29		N		ump ump	+						ne, Ethane, E Nitrate (MNA	Ethene (MNAs)
			1	500mL	Plastic	1120		N		ump	1							Metals (MNAs)
			1_	500mL	Plastic	Zn	Ac	N		ump							(MNAs)	,

	Site:	SSW Collis				WellI ID:	MW-	42				Date	e:	9/ /19	
LOCATION	Project: #:	LTM SA2 2019	SSW Collis					L-GW-4	2			Reco	orded by:	KVB	
	Weather Con	ditions & Barometric P	ressure: 754	Sun, 30	o.Ol ir	ning									
QUIPMENT	Purging Equi	pment: Peristui,	ic			Water Le	evel Indicati	or: SOlih	5+				PID Type/II	D#:	NA
QOII WILIT	Water Quality	Meter Type and #:	YSI			Sampling	g Equipmer	nt: pevist	alm	_			Turbidimete	er and #: Hu	
	Casing ID (in)):Zin				Well Vol	ume: ~	1264				Conc	dition of Wel	1: Gour	
	Initial Depth to	o Water (ft): 4,80				Total Vo	lume Purge	ed: ~2.5	nal			Wate	er in Well Va		
VELL INFO	Total Well De	epth (ft): 50.2						ke (ft): ᠘ч	,	ron h	ortoin	Well	Mouth PID ((ppm):	NA
	Water Column	n Thickness (ft): 124.5	, 4				ole Layer:		Yes		lo)	-	ient PID (pp		NA
	Remarks:													,	
CASING	Casing ID (in)	(a)·	1.0	1.5		2.0	2.2		3.0	4.0	4.3		5.0	6.0	7.0

Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
9/10/19	0745	482	nu	206	16.50	8.01	0.737	1.60	16	-85.0	Clas
	0750	4.86	nu	200	16.25	739	6.809	0.59	1. 4	-76.4	
	6755	4.87	na	700	16.05	7.23	6.877	0.40	1.7	-1096	
	0800	4.88	nu	200	16.05	7,20	0.840	0.56	1-1	-55.8	
	0805	4.89	na	200	15.99	7.18	0.846	0 47	1.1	- 51.0	
	0810	4.88	Na	7,00	16.08	7.18	0,857	0.36	1.0	- 46.B	
$\overline{}$	0815	4.89	Na	200	16.05	7.19	0.851	0.39	1.0	-45.2	

Pump Rate: <=0.5 \(\triangle \) min \(\triangle \) trawdo		Measurer	nents: 5 min	s Stabiliza	ation for 3	consecutive read	dings		
Stabilization: +/-0.5C, +/-0.	1 pH,	+/-3% Cor	nd, +/-	0.3 mg/L DO,	+/-10%	Tub (or < 50 NTL	J), +/- 10 mV ORP		
Sample Date/Time: 9/10/19	# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	MC/MCD /# of Containers	D
08/5 1/19/9	Containers	Volume	Material	Fieservative	(Y/N)	Foot Valve	Containers)	MS/MSD (# of Containers)	Parameter(s) and Analytical Method
Laboratory and	(3	40mL	VOA	HCI	N	Pump			VOCs
Chain-of-Custody #: [Q 2 01 2	(3)	40mL	VOA	HCI	N	Pump			1,4-Dioxane
	(3)	40mL	VOA	HCI	N	Pump			Methane, Ethane, Ethene (MNAs)
ALS	D	250mL	Plastic	H2SO4	N	Pump			Nitrite/Nitrate (MNAs)
	(I)	500mL	Plastic		N	Pump			Chloride, Sulfate, Metals (MNAs)
	(1)	500mL	Plastic	ZnAc	N	Pump			Sulfide (MNAs)

	Site:		SW Co						Welli	D: MW	-34				D	ate:	9/ \(
LOCATION			TM SA2						Sampl	e ID: C	OL-G	N-13			Re	ecorded by:	KVB		
	vveatner	Conditio	ins & Bard	ometric P	ressure:	80° 5	un,	30.0	01 10	ning									
EQUIPMEN	Purging I	Equipme	nt: Peni	HUNT					Water	Level Indica	itor: Si	olinst	-			PID Type/	/ID#:	NA	
	Water Q	uality Me	ter Type a	and #:	YSI				Sampl	ing Equipme	ent: p	enist	ulme			Turbidime	ter and #	Hunr	ic ti
	Casing II	7 (in): 7	in						Well V	′olume: ∼¹	1.20				Co	ondition of We	ell: 6	-001	
	Initial De	pth to Wa	ater (ft): 4	5.34					Total	Volume Purg	ed: ~	Zga1			W	ater in Well V		NO	
WELL INFO	O Total We	II Depth	(ft): 3	١, ره					Depth	of Pump Inta	ake (ft):	444	from	buttom	W	ell Mouth PID		NA	1
	Water Co	olumn Th	ickness (ft): 26.	24				Immis	cible Layer:				(No)	Ar	mbient PID (p	pm):	NA	
	Remarks	:																	
CASING	The same of the sa				1.0	0	1.5		2:0	2.2	!	3.0	4.0		1.3	5.0		6.0	7.0
INFO	Unit Casi	ng Volun	ne (gal/lin	ft) [b]:	0.0	14	0.09		0.16	0.20	0	0.37	0.69	5 0	.75	1.0		1.5	2.0
Date	Time (24 hr)	Water (FT)		Volum		Pumping Ra	ate (Lpm)	Ten	np (C)	рН	Cond	(mS/cm)	DO (mg/L)	Turb (NTU)		ORP (mv)	Remai	ks (odor, cla	rity, etc)
1/1/19	0835	5.3	59	na		ra		18	5.11	7.16	0.8	121	1.10	3.7	-	61.0	Clea	iv	
	0840	5	11	NU		200		17	.50	714	0.	796	0.40	2.6	-	15.4			
	0845	5	44	200		200		17.	38	7.13	0.	790	0.32	1.7	_	74.3			
	0850		48	200		200		16:5	573	7.12	0.	774	0.32	1. 4	-	73. Le			
	0855	5.		n	1	200		10.	,29	7.11	0:	769	0.35	1.4	-	.662			
\vee	0900	5.	50	nu	_	700		16	. ZEO	7.11	0.	766	0.37	1.4	-	-65.7			
imp Rate: < abilization:	=0.5 L/min +/-0.5C				leasurer -3% Cor		nins +/- 0.3 mg			or 3 consection 3			/- 10 mV ORF						
	Time: 9110		# of Contain	Co	ontainer olume	Containe Material	Proco	vative	Filte	er Pump	, Bailer,	Di	uplicate (# of		D (# of	Containers)	Param	eter(s) and A	Analytical Meth
aboratory an	nd		3)	40mL	VOA	H	CI	(Y/N		Valve	+ '	Containers)				VOCs		
hain-of-Cust	tody #: 197 ii	1	(3)		40mL	VOA	H	CI	N	PL	ımp						1,4-Di	oxane	
LS			(B) (1) (1)	5	40mL 250mL	VOA Plastic	H2S		N		nwb	-		-				ne, Ethane, t Nitrate (MNA	Ethene (MNAs)
					i00mL	Plastic			N	Pu	ımp						Chlorie	de, Sulfate, N	Metals (MNAs)
			1) 5	00mL	Plastic	Zn	Ac	N	Pı	ımp						Sulfide	(MNAs)	

	Site: SSW Collis			WellI ID:	MW-39			Da	ate: 9	1/10/19	
LOCATION	Project: #: LTM SA2 2019 S	SSW Collis		Sample I	D: COL-G	W- 14		Re	ecorded by:	(VB	
	Weather Conditions & Barometric Pr	essure:									
	Purging Equipment: perispan	C		Water Le	evel Indicator: 5	olinsr			PID Type/ID#	: NA	
QUIPMENT	Water Quality Meter Type and #:	YSI		-	g Equipment: 🎖				Turbidimeter	and#: ←lunn	u tli
	Casing ID (in): 250			Well Vol	ume: ~ \ . \ 50	yer!		Co	ondition of Well:	6002	
	Initial Depth to Water (ft): -: \ C			Total Vol	lume Purged: ~	Zuel		W	ater in Well Vaul	1? NC	
WELL INFO	Total Well Depth (ft): 13, 41					1: Ly 60	m borner	n W	ell Mouth PID (p	om): NA	4
	Water Column Thickness (ft): 9 5	ζ 1		Immiscib	ole Layer:	Yes	160	Ar	nbient PID (ppm)): N A	4
	Remarks:										
CASING	Casing ID (in) [a]:	1.0	1.5	/2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0
INFO	Unit Casing Volume (gal/lin ft) [b]:	0.04	0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0
2.	Time Water Level Volum	ne s	Data (Lam)	T (C)	all Coo	d/mC/om) D(> (#) T	(AITIA)	DPD (my) F	Remarks (odor, cla	arity, etc)

Date	Time (24 hr)	Water Level (FTOC)	Volume Removed (L)	Pumping Rate (Lpm)	Temp (C)	рН	Cond (mS/cm)	DO (mg/L)	Turb (NTU)	ORP (mv)	Remarks (odor, clarity, etc)
9/0/19	0470	4.17	na	700	18.27	6.99	7.011	1.95	4.7	-41.2	Cley
	0925	4.12	hu	200	17.72	6.87	2.047	0.77	4.0	-43.7	
	0930	4.12	n u	200	17-87	6.83	2.000	0.38	3.6	-42.8	
	6935	4.14	NY	200	17.72	6.82	2.052	0.24	3. i	-47.5	
	Bauc	415	na	200	17.68	6.82	2.012	0.75	7.6	- 43.3	
V	0945	4.15	ha	100	17.70	4.82	7.011	0-23	2.2	-43.L	

Pump Rate: <=0.5 L/min Drawdown: <0.33 ft Measurements: 5 mins Stabilization for 3 consecutive readings +1.03 mail DO +1.10% Tub (or < 50 NTI) +1.10 mV ORP

Stabilization: +/-0.5C, +/-0.1	i pri,	+/-3% Con	ia, +/-	0.3 mg/L DO,	T/-1076	100 (OI < 30 NTC	J), +/- 10 1114 OKF		
Sample Date/Time:	# of	Container	Container	Preservative	Filter	Pump, Bailer,	Duplicate (# of	MS/MSD (# of Containers)	Parameter(s) and Analytical Method
0945 9/10/19	Containers	Volume	Material	Preservative	(Y/N)	Foot Valve	Containers)	World Containers	
Laboratory and	(3)	40mL	VOA	HCI	N	Pump	(3)		VOCs
Chain-of-Custody #:\GZO;Z	3	40mL	VOA	HCI	N	Pump	-		1,4-Dioxane
10/20/2	2	40mL	VOA	HCI	N	Pump	_		Methane, Ethane, Ethene (MNAs)
ALS	4	250mL	Plastic	H2SO4	N	Pump			Nitrite/Nitrate (MNAs)
	+	500mL	Plastic		N	Pump			Chloride, Sulfate, Metals (MNAs)
	4	500mL	Plastic	ZnAc	N	Pump	~		Sulfide (MNAs)

H:\jobs\SSW\Collis, IA\02028025 - 2019 Long-Term Monitoring\2nd Semi-annual Sampling Event\01- Preparation\Field Forms\Monitoring Well Sample Collection.docx Page 1 of 2 April 2019

A collect COL-GW-15 (MW-39 DUP)

ATTACHMENT C GRAVEL LOT INSPECTION

SEMI-ANNUAL INSPECTION RECORD Media Management Plan Collis, Inc. Property Clinton, Iowa

Cinton, lowa	Inspection performed by: 🗜 🤟
	Date: 9 110/19
	Weather: 75th Sun
1) Gravel Truck Lot	
See attached figure for area to be inspected. Inspect gravel of showing overall condition of the lot and gravel coverage, include	
1) Inspect for evidence of excessive erosion. If excessive erosic (e.g., regrading, placement of new gravel, etc.).	on is observed, document necessary corrective measures
Non	
2) Inspect for evidence of burrowing animals. If evidence of bur measures (e.g., filling of burrow holes, etc.).	rrowing animals observed, document necessary corrective
None	
3) Inspect for areas of poor drainage or ponding. If evidence necessary corrective measures (e.g., regrading, placement of ne	ew gravel, etc.).
4) Inspect for bare areas (either no gravel cover or no veget corrective measures (e.g., placement of new gravel).	
None	
Additional/Other Maintenance needed? Yes N🂢	
Location/explanation:	
Corrective measures must be completed within 60 days of discovery (weather permitting) and documented evidence of corrective measures implementation must be provided to BB&E as part of the certification process.	
Follow-up Inspection (after repair):	Performed by:
	Date:

Photo 1

Photo 2

Photo 3

Photo 4

Photo 5

Photo 6

Photo 7

Photo 8

Photo 9